Normalized defining polynomial
\( x^{16} - 2536 x^{14} - 3656200 x^{12} + 332530944 x^{10} + 1263201268434 x^{8} + 179252047961656 x^{6} - 54996144938520724 x^{4} - 6455576794872506880 x^{2} + 174106443456598046402 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1072976581893572471636613847437598787096281088=2^{67}\cdot 17^{6}\cdot 548837153^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $652.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 548837153$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{4557837203873523641090858438705894536261425672868980222002554500151347258023} a^{14} + \frac{1155326572690647383035159266288095714828468095293308675769669035876563881992}{4557837203873523641090858438705894536261425672868980222002554500151347258023} a^{12} - \frac{1353499338185306921145144231826545855311609095136810966477840914347679291218}{4557837203873523641090858438705894536261425672868980222002554500151347258023} a^{10} + \frac{124622432781560031500500284855036987093471982534165081338123820832164844976}{651119600553360520155836919815127790894489381838425746000364928593049608289} a^{8} - \frac{155305555666972313260326007359347296274200557184858242685337658319383124202}{651119600553360520155836919815127790894489381838425746000364928593049608289} a^{6} - \frac{2150825056438331797430288444635052696916014121930480477429461786646011982761}{4557837203873523641090858438705894536261425672868980222002554500151347258023} a^{4} + \frac{256625226598190517462300161608362583015848479036650536958406144579888006056}{651119600553360520155836919815127790894489381838425746000364928593049608289} a^{2} - \frac{184220144456783526217319052546399060346698696605376298929437529162}{488502043548953446937148376013382793225416063588771382525358011223}$, $\frac{1}{4557837203873523641090858438705894536261425672868980222002554500151347258023} a^{15} + \frac{1155326572690647383035159266288095714828468095293308675769669035876563881992}{4557837203873523641090858438705894536261425672868980222002554500151347258023} a^{13} - \frac{1353499338185306921145144231826545855311609095136810966477840914347679291218}{4557837203873523641090858438705894536261425672868980222002554500151347258023} a^{11} + \frac{124622432781560031500500284855036987093471982534165081338123820832164844976}{651119600553360520155836919815127790894489381838425746000364928593049608289} a^{9} - \frac{155305555666972313260326007359347296274200557184858242685337658319383124202}{651119600553360520155836919815127790894489381838425746000364928593049608289} a^{7} - \frac{2150825056438331797430288444635052696916014121930480477429461786646011982761}{4557837203873523641090858438705894536261425672868980222002554500151347258023} a^{5} + \frac{256625226598190517462300161608362583015848479036650536958406144579888006056}{651119600553360520155836919815127790894489381838425746000364928593049608289} a^{3} - \frac{184220144456783526217319052546399060346698696605376298929437529162}{488502043548953446937148376013382793225416063588771382525358011223} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11153553466900000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 49 conjugacy class representatives for t16n1113 |
| Character table for t16n1113 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.4352.1, 8.8.9697230848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 548837153 | Data not computed | ||||||