Normalized defining polynomial
\( x^{16} + 2112 x^{14} - 335372 x^{12} - 2092104320 x^{10} - 99624248436 x^{8} + 576976513783936 x^{6} - 4032319635459760 x^{4} - 12392713672696488160 x^{2} + 696425773826392185608 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1072976581893572471636613847437598787096281088=2^{67}\cdot 17^{6}\cdot 548837153^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $652.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 548837153$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{4} a^{12}$, $\frac{1}{4} a^{13}$, $\frac{1}{3434298812067367182013236764152853525933595937951289334662167297067109212} a^{14} + \frac{24731895579569899250787229652222995215194323046827465803654037309744691}{858574703016841795503309191038213381483398984487822333665541824266777303} a^{12} + \frac{65181236599200063491464057189605150614090205624837226980064084671523255}{858574703016841795503309191038213381483398984487822333665541824266777303} a^{10} - \frac{6626605480341790229670923027338090633238862328381204113153617959498469}{50504394295108340911959364178718434204905822616930725509737754368633959} a^{8} + \frac{9397969220067945401344338796000522595812540616806050330090693641006097}{50504394295108340911959364178718434204905822616930725509737754368633959} a^{6} - \frac{119417211682511207991857503945879474957883409736401807517280973584160307}{858574703016841795503309191038213381483398984487822333665541824266777303} a^{4} - \frac{236323214128196173764684595170074298516040785844239169846225128248315165}{858574703016841795503309191038213381483398984487822333665541824266777303} a^{2} - \frac{42446181774919213597884188226692472997315632482272610948319723}{92020727858976305330334231543392679549348625487332351769082503}$, $\frac{1}{3434298812067367182013236764152853525933595937951289334662167297067109212} a^{15} + \frac{24731895579569899250787229652222995215194323046827465803654037309744691}{858574703016841795503309191038213381483398984487822333665541824266777303} a^{13} + \frac{65181236599200063491464057189605150614090205624837226980064084671523255}{858574703016841795503309191038213381483398984487822333665541824266777303} a^{11} - \frac{6626605480341790229670923027338090633238862328381204113153617959498469}{50504394295108340911959364178718434204905822616930725509737754368633959} a^{9} + \frac{9397969220067945401344338796000522595812540616806050330090693641006097}{50504394295108340911959364178718434204905822616930725509737754368633959} a^{7} - \frac{119417211682511207991857503945879474957883409736401807517280973584160307}{858574703016841795503309191038213381483398984487822333665541824266777303} a^{5} - \frac{236323214128196173764684595170074298516040785844239169846225128248315165}{858574703016841795503309191038213381483398984487822333665541824266777303} a^{3} - \frac{42446181774919213597884188226692472997315632482272610948319723}{92020727858976305330334231543392679549348625487332351769082503} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12672042406200000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 49 conjugacy class representatives for t16n1113 |
| Character table for t16n1113 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.4352.1, 8.8.9697230848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 548837153 | Data not computed | ||||||