Normalized defining polynomial
\( x^{16} - 6 x^{15} - 19 x^{14} + 140 x^{13} - 602 x^{12} + 1855 x^{11} + 5089 x^{10} - 15091 x^{9} + 30122 x^{8} - 102555 x^{7} - 56966 x^{6} - 200613 x^{5} - 2441943 x^{4} + 188181 x^{3} - 4217589 x^{2} - 820314 x + 87777 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1022160505931823153325927974904917=3^{9}\cdot 7^{14}\cdot 43^{8}\cdot 6551\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $115.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 43, 6551$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{21} a^{8} - \frac{10}{21} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{7} a + \frac{3}{7}$, $\frac{1}{21} a^{9} + \frac{5}{21} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{4}{21} a^{2} + \frac{2}{7}$, $\frac{1}{21} a^{10} - \frac{2}{7} a^{7} + \frac{1}{3} a^{6} - \frac{1}{7} a^{3} + \frac{1}{3} a^{2} - \frac{1}{7}$, $\frac{1}{63} a^{11} + \frac{1}{63} a^{10} - \frac{1}{63} a^{9} - \frac{22}{63} a^{7} - \frac{1}{3} a^{6} + \frac{2}{9} a^{5} + \frac{4}{63} a^{4} + \frac{4}{63} a^{3} - \frac{2}{7} a^{2} - \frac{1}{3} a - \frac{2}{7}$, $\frac{1}{441} a^{12} - \frac{1}{441} a^{11} + \frac{2}{147} a^{10} - \frac{4}{441} a^{9} - \frac{1}{441} a^{8} - \frac{19}{441} a^{7} - \frac{25}{63} a^{6} + \frac{23}{49} a^{5} - \frac{25}{441} a^{4} + \frac{115}{441} a^{3} + \frac{46}{147} a^{2} + \frac{8}{147} a - \frac{17}{49}$, $\frac{1}{1323} a^{13} - \frac{1}{1323} a^{12} + \frac{2}{441} a^{11} - \frac{4}{1323} a^{10} + \frac{20}{1323} a^{9} + \frac{2}{1323} a^{8} - \frac{40}{189} a^{7} - \frac{29}{441} a^{6} - \frac{613}{1323} a^{5} + \frac{409}{1323} a^{4} - \frac{1}{147} a^{3} - \frac{209}{441} a^{2} + \frac{25}{147} a - \frac{2}{21}$, $\frac{1}{1323} a^{14} - \frac{1}{1323} a^{12} + \frac{8}{1323} a^{11} - \frac{20}{1323} a^{10} - \frac{17}{1323} a^{9} - \frac{20}{1323} a^{8} - \frac{442}{1323} a^{7} - \frac{13}{189} a^{6} - \frac{41}{441} a^{5} - \frac{332}{1323} a^{4} - \frac{148}{441} a^{3} + \frac{94}{441} a^{2} + \frac{58}{147} a + \frac{4}{147}$, $\frac{1}{66604366388932028112533167171501966161} a^{15} + \frac{1680577617267802742136134485683950}{22201455462977342704177722390500655387} a^{14} - \frac{17818080240911799595886097983532511}{66604366388932028112533167171501966161} a^{13} + \frac{19242502430606489692879137472463570}{66604366388932028112533167171501966161} a^{12} + \frac{420696043108856764644609792985373590}{66604366388932028112533167171501966161} a^{11} + \frac{944713862201052656707684314212297272}{66604366388932028112533167171501966161} a^{10} - \frac{1540848337198558931826959612546451014}{66604366388932028112533167171501966161} a^{9} - \frac{146273353180947969112645270993579}{9514909484133146873219023881643138023} a^{8} + \frac{18983696321485644589463755688198559260}{66604366388932028112533167171501966161} a^{7} - \frac{4340950236628488100818420025263055784}{22201455462977342704177722390500655387} a^{6} - \frac{789369776834696870175925551311170987}{3917903905231295771325480421853056833} a^{5} + \frac{13851134617641243073506744590482577}{74752375296220009104975496264311971} a^{4} - \frac{10787803321807280282754504820326853547}{22201455462977342704177722390500655387} a^{3} + \frac{111657571218819665727957667967056034}{672771377665980081944779466378807739} a^{2} + \frac{1498665136837196982224095028583884608}{7400485154325780901392574130166885129} a + \frac{569729316072159661331015987174236202}{2466828384775260300464191376722295043}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 164472664443 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 73 conjugacy class representatives for t16n1638 are not computed |
| Character table for t16n1638 is not computed |
Intermediate fields
| \(\Q(\sqrt{21}) \), 4.4.132741.1, 8.8.5303672097381.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.8.7.1 | $x^{8} + 14$ | $8$ | $1$ | $7$ | $D_{8}$ | $[\ ]_{8}^{2}$ |
| 7.8.7.1 | $x^{8} + 14$ | $8$ | $1$ | $7$ | $D_{8}$ | $[\ ]_{8}^{2}$ | |
| $43$ | 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.2 | $x^{4} - 43 x^{2} + 5547$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 6551 | Data not computed | ||||||