Normalized defining polynomial
\( x^{16} - x^{15} - 103 x^{14} + 432 x^{13} - 41565 x^{12} - 480761 x^{11} + 827806 x^{10} + 64766322 x^{9} + 609769156 x^{8} + 1508236734 x^{7} - 13311677332 x^{6} - 106391518916 x^{5} - 340510468007 x^{4} - 190307136710 x^{3} + 2958573104934 x^{2} + 8392420893314 x + 5550170605771 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(101760566745940911333128943658372964904935881=53^{14}\cdot 97^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $562.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $53, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{11} a^{13} + \frac{4}{11} a^{12} - \frac{2}{11} a^{11} - \frac{1}{11} a^{10} - \frac{5}{11} a^{9} - \frac{4}{11} a^{8} + \frac{4}{11} a^{7} + \frac{4}{11} a^{6} - \frac{5}{11} a^{5} - \frac{1}{11} a^{4} + \frac{4}{11} a^{3} - \frac{1}{11} a^{2} + \frac{4}{11} a$, $\frac{1}{163941217} a^{14} - \frac{4473629}{163941217} a^{13} + \frac{50697121}{163941217} a^{12} - \frac{7727833}{163941217} a^{11} + \frac{18423476}{163941217} a^{10} + \frac{14594549}{163941217} a^{9} - \frac{1719463}{14903747} a^{8} - \frac{24423622}{163941217} a^{7} - \frac{3050400}{7127879} a^{6} + \frac{16948772}{163941217} a^{5} - \frac{28167763}{163941217} a^{4} + \frac{4651917}{9643601} a^{3} - \frac{64327601}{163941217} a^{2} - \frac{28988285}{163941217} a - \frac{156986}{317101}$, $\frac{1}{335754472126996084110727873169115683479049307877394640464028106009015373932516338102878995} a^{15} - \frac{186344198238265541522800913347948387743379264041339908919718963244338466759286706}{67150894425399216822145574633823136695809861575478928092805621201803074786503267620575799} a^{14} - \frac{2375487365519982144926685493156114570956670442147298845782964214224828787916431387653313}{335754472126996084110727873169115683479049307877394640464028106009015373932516338102878995} a^{13} - \frac{130750788428476595784657092451913748136573923267227986670783291794910461592559586499038716}{335754472126996084110727873169115683479049307877394640464028106009015373932516338102878995} a^{12} - \frac{131839375434388828758037088072935883808965238837163852285139939425985751062648153761953571}{335754472126996084110727873169115683479049307877394640464028106009015373932516338102878995} a^{11} + \frac{9927910465855842595048568035221604285585446221945471914526861926898454821296546898672023}{30523133829726916737338897560828698498095391625217694587638918728092306721137848918443545} a^{10} - \frac{125782391045681931752513712460368975540695867036624525928494924934230709126035208744065421}{335754472126996084110727873169115683479049307877394640464028106009015373932516338102878995} a^{9} - \frac{10339464949855295299407602436190690458213877436593645908960816270258269915870182558911604}{30523133829726916737338897560828698498095391625217694587638918728092306721137848918443545} a^{8} - \frac{140976076335170061267679302188335082517339688188999816100098979516928285125698589514450168}{335754472126996084110727873169115683479049307877394640464028106009015373932516338102878995} a^{7} + \frac{74915019707987767186483081369097838595434909466799422848034508994391885351093460706580446}{335754472126996084110727873169115683479049307877394640464028106009015373932516338102878995} a^{6} + \frac{155114212348329965757614093174188066973096958879319139773129436495998875756060556042867419}{335754472126996084110727873169115683479049307877394640464028106009015373932516338102878995} a^{5} + \frac{52834680408906478762308206632538793505214653059394585530750300588976124075308613055807223}{335754472126996084110727873169115683479049307877394640464028106009015373932516338102878995} a^{4} - \frac{7794134008810982178489681270193130408404029724366268267454054646430686996953550670419769}{30523133829726916737338897560828698498095391625217694587638918728092306721137848918443545} a^{3} + \frac{8645992360842938213577850227713485064383179021567031645556477940058949262828922398486339}{17671288006684004426880414377321878077844700414599717919159374000474493364869280952783105} a^{2} - \frac{28290510380456519449079078564546003721405066219723656488316418438854579464173063885965162}{67150894425399216822145574633823136695809861575478928092805621201803074786503267620575799} a + \frac{13422137629858360972215079130757097899653059519834709011838764029331509227921176058103}{34180441018731149761857668041241543670879497900579725182126448743664397224118531823565}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27033148371000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).C_2$ (as 16T123):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $(C_2\times OD_{16}).C_2$ |
| Character table for $(C_2\times OD_{16}).C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{53}) \), \(\Q(\sqrt{5141}) \), \(\Q(\sqrt{97}) \), 4.4.14441069.1 x2, 4.4.1400783693.1 x2, \(\Q(\sqrt{53}, \sqrt{97})\), 8.8.1962194954574718249.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{16}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $53$ | 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 53.8.7.2 | $x^{8} - 212$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $97$ | 97.8.6.2 | $x^{8} + 873 x^{4} + 235225$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 97.8.4.1 | $x^{8} + 432814 x^{4} - 912673 x^{2} + 46831989649$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |