Properties

Label 16.6.90589597273...6875.1
Degree $16$
Signature $[6, 5]$
Discriminant $-\,5^{10}\cdot 11^{6}\cdot 31^{6}\cdot 59$
Root discriminant $31.43$
Ramified primes $5, 11, 31, 59$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1774

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-361, -703, -819, -330, 386, -712, -98, -541, 4, 357, -95, 121, -62, -1, 6, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 6*x^14 - x^13 - 62*x^12 + 121*x^11 - 95*x^10 + 357*x^9 + 4*x^8 - 541*x^7 - 98*x^6 - 712*x^5 + 386*x^4 - 330*x^3 - 819*x^2 - 703*x - 361)
 
gp: K = bnfinit(x^16 - 4*x^15 + 6*x^14 - x^13 - 62*x^12 + 121*x^11 - 95*x^10 + 357*x^9 + 4*x^8 - 541*x^7 - 98*x^6 - 712*x^5 + 386*x^4 - 330*x^3 - 819*x^2 - 703*x - 361, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 6 x^{14} - x^{13} - 62 x^{12} + 121 x^{11} - 95 x^{10} + 357 x^{9} + 4 x^{8} - 541 x^{7} - 98 x^{6} - 712 x^{5} + 386 x^{4} - 330 x^{3} - 819 x^{2} - 703 x - 361 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-905895972737757998046875=-\,5^{10}\cdot 11^{6}\cdot 31^{6}\cdot 59\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $31.43$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 11, 31, 59$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{30} a^{12} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} - \frac{1}{3} a^{9} + \frac{7}{30} a^{8} - \frac{7}{30} a^{7} + \frac{3}{10} a^{6} - \frac{1}{3} a^{5} - \frac{7}{15} a^{4} + \frac{11}{30} a^{3} + \frac{1}{10} a^{2} - \frac{7}{15} a - \frac{11}{30}$, $\frac{1}{30} a^{13} - \frac{2}{5} a^{11} - \frac{2}{15} a^{10} + \frac{7}{30} a^{9} - \frac{1}{30} a^{8} + \frac{1}{10} a^{7} + \frac{1}{15} a^{6} - \frac{7}{15} a^{5} - \frac{1}{30} a^{4} - \frac{3}{10} a^{3} + \frac{1}{3} a^{2} + \frac{7}{30} a + \frac{2}{5}$, $\frac{1}{570} a^{14} + \frac{1}{570} a^{13} - \frac{4}{285} a^{12} + \frac{46}{285} a^{11} - \frac{13}{190} a^{10} + \frac{58}{285} a^{9} - \frac{6}{19} a^{8} + \frac{217}{570} a^{7} + \frac{39}{95} a^{6} - \frac{11}{114} a^{5} - \frac{21}{95} a^{4} + \frac{3}{38} a^{3} + \frac{269}{570} a^{2} - \frac{277}{570} a - \frac{4}{15}$, $\frac{1}{407241272133287103450} a^{15} + \frac{17569824300034249}{40724127213328710345} a^{14} + \frac{503195061523600831}{67873545355547850575} a^{13} + \frac{422802764066533199}{203620636066643551725} a^{12} - \frac{1819056234896137097}{5429883628443828046} a^{11} + \frac{33676694822826982397}{135747090711095701150} a^{10} + \frac{12266144769076805223}{135747090711095701150} a^{9} + \frac{19953915144247953389}{203620636066643551725} a^{8} - \frac{74612263003064811382}{203620636066643551725} a^{7} - \frac{16672769710957789759}{135747090711095701150} a^{6} + \frac{46657868498406127483}{135747090711095701150} a^{5} + \frac{158240831770960969}{67873545355547850575} a^{4} + \frac{11376846557562595199}{135747090711095701150} a^{3} - \frac{12517016156372435266}{203620636066643551725} a^{2} - \frac{39271195104034790621}{203620636066643551725} a - \frac{59849219371113482}{10716875582454923775}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1053499.1445 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1774:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 16384
The 130 conjugacy class representatives for t16n1774 are not computed
Character table for t16n1774 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.8525.1, 8.8.123911940625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ R

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.8.6.2$x^{8} - 781 x^{4} + 290521$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
31Data not computed
$59$$\Q_{59}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{59}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{59}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{59}$$x + 3$$1$$1$$0$Trivial$[\ ]$
59.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
59.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
59.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
59.2.1.2$x^{2} + 177$$2$$1$$1$$C_2$$[\ ]_{2}$
59.4.0.1$x^{4} - x + 14$$1$$4$$0$$C_4$$[\ ]^{4}$