Normalized defining polynomial
\( x^{16} - 7 x^{15} + 19 x^{14} - 27 x^{13} + 19 x^{12} + 6 x^{11} - 38 x^{10} + 66 x^{9} - 77 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[6, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-847267028262109375\) \(\medspace = -\,5^{8}\cdot 151\cdot 119851^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(13.20\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{1/2}151^{1/2}119851^{1/2}\approx 9512.492049930976$ | ||
Ramified primes: | \(5\), \(151\), \(119851\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-151}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{59}a^{14}+\frac{18}{59}a^{12}-\frac{19}{59}a^{11}-\frac{14}{59}a^{10}-\frac{14}{59}a^{9}-\frac{4}{59}a^{8}-\frac{7}{59}a^{7}-\frac{4}{59}a^{6}-\frac{14}{59}a^{5}-\frac{14}{59}a^{4}-\frac{19}{59}a^{3}+\frac{18}{59}a^{2}+\frac{1}{59}$, $\frac{1}{59}a^{15}+\frac{18}{59}a^{13}-\frac{19}{59}a^{12}-\frac{14}{59}a^{11}-\frac{14}{59}a^{10}-\frac{4}{59}a^{9}-\frac{7}{59}a^{8}-\frac{4}{59}a^{7}-\frac{14}{59}a^{6}-\frac{14}{59}a^{5}-\frac{19}{59}a^{4}+\frac{18}{59}a^{3}+\frac{1}{59}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $10$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{56}{59}a^{15}-\frac{366}{59}a^{14}+\frac{831}{59}a^{13}-\frac{808}{59}a^{12}+\frac{211}{59}a^{11}+\frac{682}{59}a^{10}-\frac{1649}{59}a^{9}+\frac{2252}{59}a^{8}-\frac{2264}{59}a^{7}+\frac{1506}{59}a^{6}-\frac{675}{59}a^{5}-\frac{365}{59}a^{4}+\frac{764}{59}a^{3}-\frac{747}{59}a^{2}+\frac{233}{59}a-\frac{71}{59}$, $\frac{3}{59}a^{15}-\frac{47}{59}a^{14}+\frac{290}{59}a^{13}-\frac{785}{59}a^{12}+\frac{910}{59}a^{11}-\frac{328}{59}a^{10}-\frac{593}{59}a^{9}+\frac{1642}{59}a^{8}-\frac{2279}{59}a^{7}+\frac{2388}{59}a^{6}-\frac{1567}{59}a^{5}+\frac{719}{59}a^{4}+\frac{357}{59}a^{3}-\frac{846}{59}a^{2}+\frac{829}{59}a-\frac{283}{59}$, $\frac{50}{59}a^{15}-\frac{213}{59}a^{14}+\frac{133}{59}a^{13}+\frac{349}{59}a^{12}-\frac{665}{59}a^{11}+\frac{630}{59}a^{10}-\frac{286}{59}a^{9}-\frac{206}{59}a^{8}+\frac{937}{59}a^{7}-\frac{1087}{59}a^{6}+\frac{1043}{59}a^{5}-\frac{564}{59}a^{4}+\frac{50}{59}a^{3}+\frac{532}{59}a^{2}-\frac{481}{59}a+\frac{141}{59}$, $\frac{79}{59}a^{15}-\frac{516}{59}a^{14}+\frac{1304}{59}a^{13}-\frac{1762}{59}a^{12}+\frac{1087}{59}a^{11}+\frac{690}{59}a^{10}-\frac{2709}{59}a^{9}+\frac{4461}{59}a^{8}-\frac{4905}{59}a^{7}+\frac{3967}{59}a^{6}-\frac{1965}{59}a^{5}+a^{4}+\frac{1491}{59}a^{3}-\frac{1795}{59}a^{2}+\frac{1141}{59}a-\frac{280}{59}$, $a$, $a-1$, $\frac{30}{59}a^{15}-\frac{133}{59}a^{14}+\frac{127}{59}a^{13}+\frac{45}{59}a^{12}-\frac{135}{59}a^{11}+\frac{203}{59}a^{10}-\frac{205}{59}a^{9}+\frac{204}{59}a^{8}-\frac{74}{59}a^{7}+\frac{53}{59}a^{6}+\frac{26}{59}a^{5}-\frac{65}{59}a^{4}-\frac{1}{59}a^{3}+\frac{25}{59}a^{2}+\frac{30}{59}a-\frac{74}{59}$, $\frac{102}{59}a^{15}-\frac{829}{59}a^{14}+\frac{2544}{59}a^{13}-\frac{3703}{59}a^{12}+\frac{2346}{59}a^{11}+\frac{1092}{59}a^{10}-\frac{5263}{59}a^{9}+\frac{8679}{59}a^{8}-\frac{9886}{59}a^{7}+136a^{6}-\frac{4159}{59}a^{5}+\frac{110}{59}a^{4}+\frac{2955}{59}a^{3}-\frac{3653}{59}a^{2}+\frac{2226}{59}a-\frac{475}{59}$, $\frac{66}{59}a^{15}-\frac{399}{59}a^{14}+\frac{952}{59}a^{13}-\frac{1356}{59}a^{12}+\frac{993}{59}a^{11}+\frac{355}{59}a^{10}-\frac{1994}{59}a^{9}+\frac{3494}{59}a^{8}-\frac{3902}{59}a^{7}+\frac{3504}{59}a^{6}-\frac{1828}{59}a^{5}+\frac{261}{59}a^{4}+\frac{1099}{59}a^{3}-\frac{1400}{59}a^{2}+\frac{1069}{59}a-\frac{340}{59}$, $\frac{126}{59}a^{15}-\frac{682}{59}a^{14}+\frac{1147}{59}a^{13}-\frac{628}{59}a^{12}-\frac{488}{59}a^{11}+\frac{1648}{59}a^{10}-\frac{2402}{59}a^{9}+\frac{2613}{59}a^{8}-\frac{1689}{59}a^{7}+\frac{492}{59}a^{6}+\frac{645}{59}a^{5}-\frac{1224}{59}a^{4}+\frac{1184}{59}a^{3}-\frac{417}{59}a^{2}-\frac{228}{59}a+\frac{203}{59}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 448.860326258 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{5}\cdot 448.860326258 \cdot 1}{2\cdot\sqrt{847267028262109375}}\cr\approx \mathstrut & 0.152809511688 \end{aligned}\]
Galois group
$C_2^6.S_4^2:D_4$ (as 16T1905):
A solvable group of order 294912 |
The 230 conjugacy class representatives for $C_2^6.S_4^2:D_4$ |
Character table for $C_2^6.S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 8.6.74906875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | $16$ | R | $16$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.4.0.1}{4} }$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.4.0.1}{4} }$ | ${\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.4.0.1}{4} }$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{4}$ | $16$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(151\) | $\Q_{151}$ | $x + 145$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{151}$ | $x + 145$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
151.2.1.1 | $x^{2} + 453$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
151.2.0.1 | $x^{2} + 149 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
151.2.0.1 | $x^{2} + 149 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
151.2.0.1 | $x^{2} + 149 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
151.2.0.1 | $x^{2} + 149 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
151.4.0.1 | $x^{4} + 13 x^{2} + 89 x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(119851\) | $\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{119851}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $4$ | $2$ | $2$ | $2$ |