Normalized defining polynomial
\( x^{16} - 6 x^{15} - 6 x^{14} + 121 x^{13} - 236 x^{12} - 740 x^{11} + 2962 x^{10} + 715 x^{9} - 10578 x^{8} + 13538 x^{7} + 14824 x^{6} - 46025 x^{5} - 8119 x^{4} + 15254 x^{3} - 31268 x^{2} - 3872 x + 4096 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-8196894918367374985699192631=-\,71^{3}\cdot 73^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $71, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{13} + \frac{1}{16} a^{12} - \frac{1}{4} a^{9} - \frac{1}{8} a^{7} - \frac{3}{16} a^{6} + \frac{3}{16} a^{5} + \frac{1}{8} a^{4} - \frac{5}{16} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{12} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} + \frac{3}{16} a^{7} + \frac{3}{8} a^{6} + \frac{3}{16} a^{5} - \frac{3}{16} a^{4} - \frac{5}{16} a^{3} + \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{4027639033028983612928227904096} a^{15} + \frac{11583788251282586161088146923}{503454879128622951616028488012} a^{14} - \frac{3898990412712235366326247784}{125863719782155737904007122003} a^{13} + \frac{132739717026913662255763413977}{4027639033028983612928227904096} a^{12} - \frac{88867578080037191150927454007}{1006909758257245903232056976024} a^{11} + \frac{81896432290292002632773664889}{1006909758257245903232056976024} a^{10} + \frac{423848700848198495431702050837}{2013819516514491806464113952048} a^{9} + \frac{801877217894909602137377939351}{4027639033028983612928227904096} a^{8} + \frac{111477145630721120450315510937}{1006909758257245903232056976024} a^{7} + \frac{435767493067461175492452162279}{1006909758257245903232056976024} a^{6} - \frac{149252423406371613717908787893}{1006909758257245903232056976024} a^{5} - \frac{484811480648234462556274669167}{4027639033028983612928227904096} a^{4} + \frac{587147222610931826256356384661}{4027639033028983612928227904096} a^{3} - \frac{510637111141544384071450674581}{2013819516514491806464113952048} a^{2} + \frac{433134584782494673142780086119}{1006909758257245903232056976024} a - \frac{29967935943371607505297872109}{125863719782155737904007122003}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 793198315.417 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1251 |
| Character table for t16n1251 is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.6.10744730066519.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 71 | Data not computed | ||||||
| $73$ | 73.8.6.1 | $x^{8} - 14527 x^{4} + 78021889$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 73.8.6.1 | $x^{8} - 14527 x^{4} + 78021889$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |