Normalized defining polynomial
\( x^{16} - 26 x^{14} - 3 x^{13} + 137 x^{12} - 953 x^{11} + 3699 x^{10} + 19111 x^{9} - 31887 x^{8} - 224360 x^{7} + 216515 x^{6} + 782415 x^{5} - 505143 x^{4} - 920155 x^{3} + 78893 x^{2} + 372274 x + 184301 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-652030299991134977060343848687=-\,17^{12}\cdot 47^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{13242334464612654631510201099958975591024952661} a^{15} - \frac{4682136142275001038725140894270692915623903520}{13242334464612654631510201099958975591024952661} a^{14} - \frac{1221553440231200405293363240048298572613316638}{13242334464612654631510201099958975591024952661} a^{13} + \frac{4787416700139762751371322177135151218752895608}{13242334464612654631510201099958975591024952661} a^{12} + \frac{1949519609194177897201867282986630034310348420}{13242334464612654631510201099958975591024952661} a^{11} + \frac{4107138392985286216238873773017306019920340416}{13242334464612654631510201099958975591024952661} a^{10} + \frac{2710827303741263542441286501211691894651730317}{13242334464612654631510201099958975591024952661} a^{9} - \frac{944080553268911864113143851371410361244126245}{13242334464612654631510201099958975591024952661} a^{8} + \frac{1596905009829108864738016905737292059713595162}{13242334464612654631510201099958975591024952661} a^{7} + \frac{4047374694570275366790372383420562630788863104}{13242334464612654631510201099958975591024952661} a^{6} + \frac{73242627793261637674227698256792123382489058}{13242334464612654631510201099958975591024952661} a^{5} + \frac{398264349162704133409408279726463297097498350}{13242334464612654631510201099958975591024952661} a^{4} - \frac{169427383531866125915895423392925743934248101}{1018641112662511894731553930766075045463457897} a^{3} - \frac{2396340083088355888119710844583482568050526091}{13242334464612654631510201099958975591024952661} a^{2} + \frac{133590760839509402633140473014302393519256651}{13242334464612654631510201099958975591024952661} a - \frac{454848079425219388213218586166442687528174132}{1018641112662511894731553930766075045463457897}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 470864643.569 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1251 |
| Character table for t16n1251 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.6.2506034826287.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 47 | Data not computed | ||||||