Normalized defining polynomial
\( x^{16} - 6 x^{15} - 21 x^{14} + 181 x^{13} - 211 x^{12} - 930 x^{11} + 3516 x^{10} - 8756 x^{9} + 11469 x^{8} - 1733 x^{7} - 12193 x^{6} + 39909 x^{5} - 42541 x^{4} + 28413 x^{3} - 5137 x^{2} - 4173 x + 4759 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-652030299991134977060343848687=-\,17^{12}\cdot 47^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{26} a^{14} - \frac{1}{13} a^{13} + \frac{3}{26} a^{12} - \frac{1}{26} a^{11} - \frac{1}{13} a^{10} + \frac{5}{26} a^{9} - \frac{6}{13} a^{8} + \frac{1}{26} a^{7} - \frac{11}{26} a^{5} + \frac{9}{26} a^{4} + \frac{4}{13} a^{3} - \frac{5}{13} a^{2} + \frac{3}{26} a + \frac{1}{13}$, $\frac{1}{12043762984133866990026247723959578} a^{15} - \frac{72446080804774595413173870440209}{6021881492066933495013123861979789} a^{14} - \frac{305167193408721912080304211901641}{12043762984133866990026247723959578} a^{13} + \frac{1228381230585972415441782944247933}{12043762984133866990026247723959578} a^{12} - \frac{2608753652298037362843539445533854}{6021881492066933495013123861979789} a^{11} + \frac{636957941106676422314572155270083}{12043762984133866990026247723959578} a^{10} + \frac{1014892491983899584341620580664292}{6021881492066933495013123861979789} a^{9} - \frac{4542470077999428784422157720740219}{12043762984133866990026247723959578} a^{8} - \frac{1639955437604689948150788101422257}{6021881492066933495013123861979789} a^{7} - \frac{1880819375811229997245911056989869}{12043762984133866990026247723959578} a^{6} + \frac{3696971609715192564551880078795831}{12043762984133866990026247723959578} a^{5} - \frac{70328383730208710272250359152986}{6021881492066933495013123861979789} a^{4} + \frac{861636168345365672312858765983085}{6021881492066933495013123861979789} a^{3} - \frac{4204626748170732646027052450399683}{12043762984133866990026247723959578} a^{2} - \frac{1360353434843633312671503189871992}{6021881492066933495013123861979789} a + \frac{1732012280573546547413483879782995}{6021881492066933495013123861979789}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 468564403.701 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1251 |
| Character table for t16n1251 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, 8.6.2506034826287.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 47 | Data not computed | ||||||