Normalized defining polynomial
\( x^{16} - 4 x^{15} - 27 x^{14} + 110 x^{13} + 62 x^{12} - 221 x^{11} + 915 x^{10} - 3330 x^{9} - 6013 x^{8} + 3563 x^{7} - 16425 x^{6} + 59112 x^{5} + 7052 x^{4} + 94968 x^{3} + 28272 x^{2} + 32384 x + 7744 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-55165324595664289089457824787=-\,43^{3}\cdot 97^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $43, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{12} + \frac{1}{6} a^{11} - \frac{1}{4} a^{10} - \frac{1}{3} a^{9} - \frac{1}{6} a^{8} - \frac{1}{12} a^{7} - \frac{1}{4} a^{6} + \frac{1}{3} a^{5} - \frac{5}{12} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{24} a^{13} + \frac{5}{24} a^{11} + \frac{1}{12} a^{10} + \frac{1}{4} a^{9} + \frac{1}{8} a^{8} - \frac{1}{24} a^{7} + \frac{5}{12} a^{6} + \frac{11}{24} a^{5} + \frac{7}{24} a^{4} + \frac{1}{8} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{48} a^{14} + \frac{1}{48} a^{12} - \frac{1}{8} a^{11} + \frac{3}{8} a^{10} - \frac{5}{48} a^{9} + \frac{7}{48} a^{8} + \frac{7}{24} a^{7} + \frac{23}{48} a^{6} - \frac{3}{16} a^{5} + \frac{23}{48} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3419893237312077958592750283936} a^{15} - \frac{157709166642321191092378483}{213743327332004872412046892746} a^{14} + \frac{19268900892949330527312105799}{1139964412437359319530916761312} a^{13} + \frac{1596131557797271777306007545}{51816564201698150887768943696} a^{12} + \frac{103125996075052124539294313673}{569982206218679659765458380656} a^{11} + \frac{525886179205200676039990684475}{3419893237312077958592750283936} a^{10} + \frac{1705329149602503883993270172879}{3419893237312077958592750283936} a^{9} - \frac{225927035570226269006033484083}{1709946618656038979296375141968} a^{8} + \frac{392937297028295095497535564521}{1139964412437359319530916761312} a^{7} - \frac{348355744630266322667481825747}{1139964412437359319530916761312} a^{6} - \frac{483324403730868923194386693005}{3419893237312077958592750283936} a^{5} + \frac{141154926545257809658886709471}{284991103109339829882729190328} a^{4} + \frac{183902686076596691945843117227}{854973309328019489648187570984} a^{3} + \frac{16076315161536768422404683175}{142495551554669914941364595164} a^{2} - \frac{74461262525089759802509939345}{213743327332004872412046892746} a - \frac{294317679353132806446991910}{9715605787818403291456676943}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 387819918.535 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1251 |
| Character table for t16n1251 is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.6.35817796211947.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 43 | Data not computed | ||||||
| 97 | Data not computed | ||||||