Normalized defining polynomial
\( x^{16} - 5 x^{15} - 11 x^{14} + 49 x^{13} - 60 x^{12} - 363 x^{11} + 1312 x^{10} + 4861 x^{9} + 1271 x^{8} - 9814 x^{7} - 12797 x^{6} - 12306 x^{5} - 11875 x^{4} + 6369 x^{3} + 22546 x^{2} + 17112 x + 6173 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-55165324595664289089457824787=-\,43^{3}\cdot 97^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $43, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{12} - \frac{1}{6} a^{10} - \frac{1}{3} a^{9} + \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{2} a^{5} + \frac{1}{6} a^{3} + \frac{1}{6} a^{2} + \frac{1}{6}$, $\frac{1}{108} a^{14} + \frac{1}{18} a^{13} - \frac{11}{54} a^{12} - \frac{7}{108} a^{11} - \frac{1}{12} a^{10} - \frac{31}{108} a^{9} - \frac{5}{54} a^{8} + \frac{5}{54} a^{7} - \frac{1}{12} a^{6} - \frac{5}{12} a^{5} + \frac{37}{108} a^{4} + \frac{11}{27} a^{3} + \frac{4}{27} a^{2} + \frac{25}{108} a + \frac{43}{108}$, $\frac{1}{263858127390306036140177866428} a^{15} + \frac{2303908441716588057806853}{2443130809169500334631276541} a^{14} - \frac{1886143928929948307964651616}{65964531847576509035044466607} a^{13} + \frac{16321009611999097918977179831}{263858127390306036140177866428} a^{12} - \frac{1611418876109325424185298963}{87952709130102012046725955476} a^{11} + \frac{63471343502517169664093291771}{263858127390306036140177866428} a^{10} - \frac{3487040532856416310000283863}{65964531847576509035044466607} a^{9} - \frac{30564484887851039977461468689}{65964531847576509035044466607} a^{8} + \frac{42866217201833725448218800379}{87952709130102012046725955476} a^{7} + \frac{11286602961513606188895944059}{29317569710034004015575318492} a^{6} - \frac{91217021555188344017556570185}{263858127390306036140177866428} a^{5} - \frac{52834838328097098373610670077}{131929063695153018070088933214} a^{4} + \frac{47322983101092914539147912949}{131929063695153018070088933214} a^{3} - \frac{10578400231958819686374688349}{263858127390306036140177866428} a^{2} - \frac{86544457570132104865184537057}{263858127390306036140177866428} a + \frac{15493880475071660193438862721}{43976354565051006023362977738}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 387819918.535 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1251 |
| Character table for t16n1251 is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.6.35817796211947.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 43 | Data not computed | ||||||
| 97 | Data not computed | ||||||