Normalized defining polynomial
\( x^{16} - 4064 x^{14} - 7793522 x^{12} + 51851891316 x^{10} - 64623851152335 x^{8} + 16943428675424988 x^{6} + 477521499921995448 x^{4} - 272538091023140842308 x^{2} - 402460802329301763291 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-55013835857676939099088270698740000784693073140191887871554093056=-\,2^{48}\cdot 3^{11}\cdot 7^{8}\cdot 294337^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11{,}124.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 294337$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{9} - \frac{1}{9} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{8} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{7} + \frac{1}{3} a^{3}$, $\frac{1}{45} a^{12} - \frac{4}{45} a^{8} - \frac{4}{15} a^{4} - \frac{2}{5}$, $\frac{1}{494955} a^{13} + \frac{5269}{98991} a^{11} - \frac{4289}{494955} a^{9} - \frac{13100}{98991} a^{7} + \frac{5487}{54995} a^{5} - \frac{12799}{32997} a^{3} + \frac{20413}{54995} a$, $\frac{1}{219933028740653593092501458328089942756787605016482672259527796243188595} a^{14} - \frac{2108662968714583089003248926697618405691013860858294734974095315708044}{219933028740653593092501458328089942756787605016482672259527796243188595} a^{12} + \frac{11057791092376275095071820076301911536828288619517166161047953593847881}{219933028740653593092501458328089942756787605016482672259527796243188595} a^{10} + \frac{8039652554812748242563885510673644968857390271076542237804922537972377}{73311009580217864364167152776029980918929201672160890753175932081062865} a^{8} - \frac{6894403873364584350101702294248132031117544585225803543194373492335004}{73311009580217864364167152776029980918929201672160890753175932081062865} a^{6} + \frac{8755748150763911181826503002497259512935689863367774272469603436178477}{24437003193405954788055717592009993639643067224053630251058644027020955} a^{4} - \frac{12216299132453116937081238907936015333529764179213004936036956921964397}{24437003193405954788055717592009993639643067224053630251058644027020955} a^{2} - \frac{145588823625255618758933495937416206925474493462496721535904323}{1144640763483109714018576537355112168627341712065793169200508745}$, $\frac{1}{142296669595202874730848443538274192963641580445664288951914484169343020965} a^{15} - \frac{96203882198798577045719242649736576543937736524466361357501101718083}{142296669595202874730848443538274192963641580445664288951914484169343020965} a^{13} - \frac{219874470172430219413955330583615677910252728075432788477588679624135767}{8370392329129580866520496678722011350802445908568487585406734362902530645} a^{11} + \frac{2441869339232973664918058237213723874247347501209468885320692696476212354}{47432223198400958243616147846091397654547193481888096317304828056447673655} a^{9} + \frac{512304542869959896493764190887132143729092034998602001631261959564906009}{5270247022044550915957349760676821961616354831320899590811647561827519295} a^{7} + \frac{2076294486343588372261043424849973148162236817289944785810383211422319788}{5270247022044550915957349760676821961616354831320899590811647561827519295} a^{5} - \frac{4062050632282788996714471926901435353417122002957669532033049884694143057}{15810741066133652747872049282030465884849064493962698772434942685482557885} a^{3} + \frac{2411801288336945663289079763158466510551056072700308508211602671463}{12589903757550723744490323334368878742732131491011659068036395686255} a$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 76246431647900000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 29 conjugacy class representatives for t16n1022 |
| Character table for t16n1022 is not computed |
Intermediate fields
| \(\Q(\sqrt{21}) \), 4.4.2076841872.1, 8.6.975018691690245188654137344.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 294337 | Data not computed | ||||||