Normalized defining polynomial
\( x^{16} + 4064 x^{14} - 13035650 x^{12} - 63913090068 x^{10} - 39818130261039 x^{8} - 2834713503199836 x^{6} + 1042122049007108184 x^{4} + 8207228617425469476 x^{2} - 27830083703378571 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-55013835857676939099088270698740000784693073140191887871554093056=-\,2^{48}\cdot 3^{11}\cdot 7^{8}\cdot 294337^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11{,}124.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 294337$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{9} + \frac{1}{9} a^{7} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{10} + \frac{1}{9} a^{8} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{45} a^{12} + \frac{1}{45} a^{10} - \frac{2}{15} a^{8} - \frac{1}{15} a^{6} - \frac{4}{15} a^{4} + \frac{1}{5} a^{2} + \frac{2}{5}$, $\frac{1}{45135} a^{13} - \frac{553}{15045} a^{11} - \frac{1606}{45135} a^{9} - \frac{551}{15045} a^{7} - \frac{973}{5015} a^{5} - \frac{2119}{5015} a^{3} - \frac{458}{5015} a$, $\frac{1}{12874764822541965730441323270221000244918414271318817111659463382328155} a^{14} + \frac{12792228965436829378939480461312229244188179159432042182213668341404}{12874764822541965730441323270221000244918414271318817111659463382328155} a^{12} + \frac{66161931359407631650272968640316675535067446118634632134482535108482}{12874764822541965730441323270221000244918414271318817111659463382328155} a^{10} - \frac{416005073950757660887235819862711374918533895225829503859915981801937}{4291588274180655243480441090073666748306138090439605703886487794109385} a^{8} - \frac{164590479493971541963203286428072471866851633558399463536657822919177}{4291588274180655243480441090073666748306138090439605703886487794109385} a^{6} - \frac{39582281921735665504817339627483602995250316132039040464577051373673}{1430529424726885081160147030024555582768712696813201901295495931369795} a^{4} - \frac{70227666210202937877992354694496557899205497444351025937808352088927}{286105884945377016232029406004911116553742539362640380259099186273959} a^{2} - \frac{927355345458450082294116563945113540288703410352255207866040544}{8057913405134230535287623175809045083780932326259649871264713945}$, $\frac{1}{759611124529975978096038072943039014450186442007810209587908339557361145} a^{15} - \frac{4037528972526524517062249303682542317796676097193862538909813204123}{759611124529975978096038072943039014450186442007810209587908339557361145} a^{13} + \frac{1591863680852844121775016845684572907621192912295236789268279075992129}{151922224905995195619207614588607802890037288401562041917581667911472229} a^{11} - \frac{111995468727383523271159087305511101171694804234851912211243885780283}{4964778591699189399320510280673457610785532300704641892731427055930465} a^{9} + \frac{84339324805059505195248460422079196246205151576040093525607889858318}{992955718339837879864102056134691522157106460140928378546285411186093} a^{7} + \frac{1076791661296500142929964068117169577283078415890812639369947224479618}{84401236058886219788448674771448779383354049111978912176434259950817905} a^{5} - \frac{9988979710191362020500285685559488637326021264182856566652422192183097}{84401236058886219788448674771448779383354049111978912176434259950817905} a^{3} + \frac{2092185105910321056632242241204579263732183938573536067789126478764}{8082087145349633226893486045336472219032275123238428820878508086835} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 152492863296000000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 29 conjugacy class representatives for t16n1022 |
| Character table for t16n1022 is not computed |
Intermediate fields
| \(\Q(\sqrt{21}) \), 4.4.2076841872.1, 8.6.975018691690245188654137344.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 294337 | Data not computed | ||||||