Normalized defining polynomial
\( x^{16} - 5228 x^{14} + 1344530 x^{12} + 2572006372 x^{10} - 93193540402 x^{8} - 288635660521604 x^{6} - 27550249139175866 x^{4} - 142053998213105748 x^{2} - 180141748647795219 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-55013835857676939099088270698740000784693073140191887871554093056=-\,2^{48}\cdot 3^{11}\cdot 7^{8}\cdot 294337^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11{,}124.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 294337$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{10} a^{12} - \frac{1}{5} a^{10} + \frac{1}{10} a^{8} + \frac{1}{5} a^{6} + \frac{3}{10} a^{4} + \frac{3}{10}$, $\frac{1}{27710} a^{13} - \frac{3266}{13855} a^{11} + \frac{5811}{27710} a^{9} - \frac{4874}{13855} a^{7} + \frac{11953}{27710} a^{5} + \frac{1183}{2771} a^{3} - \frac{12077}{27710} a$, $\frac{1}{738361347709983369418725370379675962569377596121557935485139730} a^{14} + \frac{14971861780691139350620569952169108919803732779869337346059991}{738361347709983369418725370379675962569377596121557935485139730} a^{12} - \frac{11072829093364138208789487389485466475200380949939354611230458}{73836134770998336941872537037967596256937759612155793548513973} a^{10} - \frac{36356709294173574819930610421141437135388933847915552895042895}{147672269541996673883745074075935192513875519224311587097027946} a^{8} - \frac{333255392205751974027477587479194061490602023927754967945040251}{738361347709983369418725370379675962569377596121557935485139730} a^{6} - \frac{169013620719910700046399598578515437643177207336421405403403091}{738361347709983369418725370379675962569377596121557935485139730} a^{4} - \frac{83010043577739203646787595798232335391369212580294752669543011}{369180673854991684709362685189837981284688798060778967742569865} a^{2} + \frac{89450662325280885647223041056601904215539695373058759853}{1634725448964147446092029787876795740656133078845886151010}$, $\frac{1}{120352899676727289215252235371887181898808548167813943484077775990} a^{15} + \frac{57116342489194391236906709468809797345761554362130370653076}{3539791166962567329860359863879034761729663181406292455414052235} a^{13} - \frac{27599486935971786941212088221735849765349596785107276920732594881}{120352899676727289215252235371887181898808548167813943484077775990} a^{11} + \frac{26364478554725710678178284970015348597993854551319022833672868053}{120352899676727289215252235371887181898808548167813943484077775990} a^{9} + \frac{6434403423042985530758905273000037545195081865065907346611916349}{24070579935345457843050447074377436379761709633562788696815555198} a^{7} - \frac{15197026277165173784684699365383860729175408284285627388116664431}{60176449838363644607626117685943590949404274083906971742038887995} a^{5} + \frac{57969077789892329826057242940944492735047374069469133826829121543}{120352899676727289215252235371887181898808548167813943484077775990} a^{3} - \frac{203473910040574314683937743701787953506614913265932124419153}{4529824219079652573121014542206600997358144761481950524448710} a$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 80464149496200000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 29 conjugacy class representatives for t16n994 |
| Character table for t16n994 is not computed |
Intermediate fields
| \(\Q(\sqrt{21}) \), 4.4.2076841872.1, 8.6.975018691690245188654137344.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 294337 | Data not computed | ||||||