Normalized defining polynomial
\( x^{16} + 6392 x^{14} + 9542174 x^{12} - 690444484 x^{10} - 4139016974887 x^{8} + 721181608173092 x^{6} - 36554998011899960 x^{4} + 422775017521333932 x^{2} - 180141748647795219 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-55013835857676939099088270698740000784693073140191887871554093056=-\,2^{48}\cdot 3^{11}\cdot 7^{8}\cdot 294337^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $11{,}124.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 294337$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{8} - \frac{1}{5} a^{6} + \frac{2}{5} a^{4} + \frac{1}{5} a^{2} + \frac{2}{5}$, $\frac{1}{13855} a^{13} - \frac{1134}{2771} a^{11} + \frac{4881}{13855} a^{9} + \frac{859}{13855} a^{7} + \frac{4202}{13855} a^{5} + \frac{766}{13855} a^{3} - \frac{3233}{13855} a$, $\frac{1}{446689292397809546514670500355739313758584219024192557332039642665} a^{14} - \frac{5900057723762684992872278992733514719886112701448543488651997498}{89337858479561909302934100071147862751716843804838511466407928533} a^{12} - \frac{53444898673673873409440198099545615681612112228873769359725483404}{446689292397809546514670500355739313758584219024192557332039642665} a^{10} - \frac{121361491932077427312678423092978065776954987680392230886526187531}{446689292397809546514670500355739313758584219024192557332039642665} a^{8} + \frac{164370335023118244824963611281861042668595718715593234090288279787}{446689292397809546514670500355739313758584219024192557332039642665} a^{6} - \frac{63391972513816458559456476606499759717518245526156090340818222554}{446689292397809546514670500355739313758584219024192557332039642665} a^{4} - \frac{176093838429131096413546120399611650987414224980625035856828006253}{446689292397809546514670500355739313758584219024192557332039642665} a^{2} - \frac{35744992207449640922226993814561827057275575582330543987962}{197793223149406560283510637277738237069111600217056391385821}$, $\frac{1}{72810354660842956081891291557985508142649227700943386845122461754395} a^{15} + \frac{119454132725063084510245280430928807335576066456418243124663612}{4282962038873115063640664209293265184861719276526081579124850691435} a^{13} - \frac{13559227033525091926853007091208369572852923205077989914575512326334}{72810354660842956081891291557985508142649227700943386845122461754395} a^{11} - \frac{21767399084715342393123593610919921987795877318982146862070894283262}{72810354660842956081891291557985508142649227700943386845122461754395} a^{9} + \frac{8935245970457755105213023200619848273998914089908268271586454910468}{72810354660842956081891291557985508142649227700943386845122461754395} a^{7} + \frac{8696973326629107236028257924487823017171421673454185004629888651829}{72810354660842956081891291557985508142649227700943386845122461754395} a^{5} - \frac{11311795139499230261879273064562101131627884343948437141581439803984}{72810354660842956081891291557985508142649227700943386845122461754395} a^{3} + \frac{211962909225771711549786768246663708394255885511442201197410657}{2740425106735027892728039879483063274592541221007316302650549955} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 160928298992000000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 29 conjugacy class representatives for t16n994 |
| Character table for t16n994 is not computed |
Intermediate fields
| \(\Q(\sqrt{21}) \), 4.4.2076841872.1, 8.6.975018691690245188654137344.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 294337 | Data not computed | ||||||