Properties

Label 16.6.51572878410...9375.1
Degree $16$
Signature $[6, 5]$
Discriminant $-\,5^{12}\cdot 101^{6}\cdot 199$
Root discriminant $26.27$
Ramified primes $5, 101, 199$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1643

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-59, 63, 41, 212, -506, 97, 592, -584, 81, 225, -208, 56, 4, -20, 10, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 10*x^14 - 20*x^13 + 4*x^12 + 56*x^11 - 208*x^10 + 225*x^9 + 81*x^8 - 584*x^7 + 592*x^6 + 97*x^5 - 506*x^4 + 212*x^3 + 41*x^2 + 63*x - 59)
 
gp: K = bnfinit(x^16 - 4*x^15 + 10*x^14 - 20*x^13 + 4*x^12 + 56*x^11 - 208*x^10 + 225*x^9 + 81*x^8 - 584*x^7 + 592*x^6 + 97*x^5 - 506*x^4 + 212*x^3 + 41*x^2 + 63*x - 59, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 10 x^{14} - 20 x^{13} + 4 x^{12} + 56 x^{11} - 208 x^{10} + 225 x^{9} + 81 x^{8} - 584 x^{7} + 592 x^{6} + 97 x^{5} - 506 x^{4} + 212 x^{3} + 41 x^{2} + 63 x - 59 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-51572878410546630859375=-\,5^{12}\cdot 101^{6}\cdot 199\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $26.27$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 101, 199$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{71} a^{14} + \frac{5}{71} a^{13} + \frac{7}{71} a^{12} + \frac{16}{71} a^{11} + \frac{25}{71} a^{10} + \frac{10}{71} a^{9} + \frac{31}{71} a^{8} + \frac{24}{71} a^{7} + \frac{16}{71} a^{6} - \frac{30}{71} a^{5} - \frac{20}{71} a^{4} + \frac{8}{71} a^{3} + \frac{29}{71} a^{2} + \frac{18}{71} a + \frac{18}{71}$, $\frac{1}{1032313640336851321} a^{15} + \frac{5219334197451613}{1032313640336851321} a^{14} + \frac{40929997573307507}{1032313640336851321} a^{13} - \frac{372263156898132039}{1032313640336851321} a^{12} + \frac{36753645453666874}{1032313640336851321} a^{11} + \frac{63206344518562247}{1032313640336851321} a^{10} + \frac{108910682132050249}{1032313640336851321} a^{9} + \frac{404285860603327335}{1032313640336851321} a^{8} - \frac{458975843396773207}{1032313640336851321} a^{7} - \frac{43853872682063067}{1032313640336851321} a^{6} + \frac{300637667047804557}{1032313640336851321} a^{5} + \frac{389198998675603906}{1032313640336851321} a^{4} + \frac{498376369863959978}{1032313640336851321} a^{3} - \frac{58888940911467427}{1032313640336851321} a^{2} - \frac{148337049994601630}{1032313640336851321} a + \frac{483948678690027257}{1032313640336851321}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 160345.293787 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1643:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4096
The 64 conjugacy class representatives for t16n1643 are not computed
Character table for t16n1643 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.2525.1, 8.8.16098453125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ $16$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$101$101.4.0.1$x^{4} - x + 12$$1$$4$$0$$C_4$$[\ ]^{4}$
101.4.2.1$x^{4} + 505 x^{2} + 91809$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
101.8.4.1$x^{8} + 244824 x^{4} - 1030301 x^{2} + 14984697744$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$199$$\Q_{199}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{199}$$x + 2$$1$$1$$0$Trivial$[\ ]$
199.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
199.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
199.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
199.2.1.2$x^{2} + 398$$2$$1$$1$$C_2$$[\ ]_{2}$
199.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
199.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
199.2.0.1$x^{2} - x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$