Normalized defining polynomial
\( x^{16} - x^{15} - 3 x^{14} + 10 x^{13} - 13 x^{12} + 6 x^{11} + 12 x^{10} - 33 x^{9} + 41 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[6, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(-505241847543359375\) \(\medspace = -\,5^{8}\cdot 71^{3}\cdot 1901^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(12.78\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{1/2}71^{3/4}1901^{1/2}\approx 2384.6235143470617$ | ||
Ramified primes: | \(5\), \(71\), \(1901\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-71}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{323}a^{14}-\frac{147}{323}a^{13}+\frac{140}{323}a^{12}+\frac{66}{323}a^{11}-\frac{99}{323}a^{10}-\frac{141}{323}a^{9}+\frac{25}{323}a^{8}+\frac{11}{323}a^{7}+\frac{25}{323}a^{6}-\frac{141}{323}a^{5}-\frac{99}{323}a^{4}+\frac{66}{323}a^{3}+\frac{140}{323}a^{2}-\frac{147}{323}a+\frac{1}{323}$, $\frac{1}{323}a^{15}-\frac{151}{323}a^{13}-\frac{26}{323}a^{12}-\frac{87}{323}a^{11}-\frac{159}{323}a^{10}-\frac{30}{323}a^{9}+\frac{7}{17}a^{8}+\frac{27}{323}a^{7}-\frac{1}{17}a^{6}-\frac{154}{323}a^{5}+\frac{48}{323}a^{4}+\frac{8}{17}a^{3}+\frac{84}{323}a^{2}+\frac{33}{323}a+\frac{147}{323}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $10$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{4}{17}a^{15}+\frac{155}{323}a^{14}-\frac{346}{323}a^{13}+\frac{21}{323}a^{12}+\frac{1034}{323}a^{11}-\frac{1589}{323}a^{10}+\frac{1059}{323}a^{9}+\frac{740}{323}a^{8}-\frac{178}{19}a^{7}+\frac{200}{19}a^{6}-\frac{2874}{323}a^{5}+\frac{577}{323}a^{4}+\frac{464}{323}a^{3}-\frac{58}{19}a^{2}+\frac{395}{323}a+\frac{22}{323}$, $\frac{300}{323}a^{15}-\frac{63}{323}a^{14}-\frac{1155}{323}a^{13}+\frac{2114}{323}a^{12}-\frac{1511}{323}a^{11}-\frac{45}{19}a^{10}+\frac{4082}{323}a^{9}-\frac{6572}{323}a^{8}+\frac{5146}{323}a^{7}-\frac{2107}{323}a^{6}-\frac{1787}{323}a^{5}+\frac{3518}{323}a^{4}-\frac{2163}{323}a^{3}+\frac{1199}{323}a^{2}+\frac{427}{323}a-\frac{537}{323}$, $a$, $\frac{108}{323}a^{15}-\frac{212}{323}a^{14}-\frac{325}{323}a^{13}+\frac{1427}{323}a^{12}-\frac{2070}{323}a^{11}+\frac{1232}{323}a^{10}+\frac{1458}{323}a^{9}-\frac{4825}{323}a^{8}+\frac{6398}{323}a^{7}-\frac{5091}{323}a^{6}+\frac{134}{19}a^{5}+\frac{655}{323}a^{4}-\frac{1452}{323}a^{3}+\frac{1033}{323}a^{2}-\frac{479}{323}a-\frac{163}{323}$, $\frac{124}{323}a^{15}-\frac{63}{323}a^{14}-\frac{419}{323}a^{13}+\frac{876}{323}a^{12}-\frac{1057}{323}a^{11}+\frac{733}{323}a^{10}+\frac{641}{323}a^{9}-\frac{2848}{323}a^{8}+\frac{3947}{323}a^{7}-\frac{3931}{323}a^{6}+\frac{2707}{323}a^{5}-\frac{43}{19}a^{4}-\frac{491}{323}a^{3}+\frac{67}{17}a^{2}-\frac{536}{323}a+\frac{77}{323}$, $\frac{94}{323}a^{15}+\frac{145}{323}a^{14}-\frac{302}{323}a^{13}+\frac{91}{323}a^{12}+\frac{423}{323}a^{11}-\frac{554}{323}a^{10}+\frac{637}{323}a^{9}-\frac{346}{323}a^{8}-\frac{712}{323}a^{7}+\frac{870}{323}a^{6}-\frac{1329}{323}a^{5}+\frac{10}{19}a^{4}-\frac{44}{323}a^{3}-\frac{29}{17}a^{2}+\frac{521}{323}a+\frac{74}{323}$, $\frac{143}{323}a^{15}-\frac{287}{323}a^{14}-\frac{21}{17}a^{13}+\frac{1968}{323}a^{12}-\frac{2959}{323}a^{11}+\frac{1477}{323}a^{10}+\frac{2262}{323}a^{9}-\frac{6567}{323}a^{8}+\frac{8456}{323}a^{7}-\frac{6662}{323}a^{6}+\frac{154}{19}a^{5}+\frac{1039}{323}a^{4}-\frac{2051}{323}a^{3}+\frac{1871}{323}a^{2}-\frac{573}{323}a+\frac{62}{323}$, $\frac{28}{323}a^{15}+\frac{135}{323}a^{14}-\frac{9}{17}a^{13}-\frac{239}{323}a^{12}+\frac{983}{323}a^{11}-\frac{1344}{323}a^{10}+\frac{797}{323}a^{9}+\frac{962}{323}a^{8}-\frac{2927}{323}a^{7}+\frac{3489}{323}a^{6}-\frac{3321}{323}a^{5}+\frac{1868}{323}a^{4}-\frac{400}{323}a^{3}-\frac{389}{323}a^{2}+\frac{27}{19}a-\frac{271}{323}$, $\frac{59}{323}a^{15}-\frac{156}{323}a^{14}-\frac{189}{323}a^{13}+\frac{851}{323}a^{12}-\frac{1540}{323}a^{11}+\frac{895}{323}a^{10}+\frac{1169}{323}a^{9}-\frac{3482}{323}a^{8}+\frac{4076}{323}a^{7}-\frac{3083}{323}a^{6}+\frac{1282}{323}a^{5}+\frac{1157}{323}a^{4}-\frac{1005}{323}a^{3}+\frac{881}{323}a^{2}+\frac{331}{323}a-\frac{12}{19}$, $\frac{39}{323}a^{15}-\frac{24}{323}a^{14}-\frac{100}{323}a^{13}+\frac{471}{323}a^{12}-\frac{455}{323}a^{11}-\frac{16}{19}a^{10}+\frac{1245}{323}a^{9}-\frac{1227}{323}a^{8}+\frac{466}{323}a^{7}+\frac{274}{323}a^{6}-\frac{53}{17}a^{5}+\frac{695}{323}a^{4}-\frac{178}{323}a^{3}-\frac{407}{323}a^{2}+\frac{293}{323}a-\frac{105}{323}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 335.766972694 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{5}\cdot 335.766972694 \cdot 1}{2\cdot\sqrt{505241847543359375}}\cr\approx \mathstrut & 0.148025875324 \end{aligned}\]
Galois group
$C_2^6.S_4^2:D_4$ (as 16T1905):
A solvable group of order 294912 |
The 230 conjugacy class representatives for $C_2^6.S_4^2:D_4$ |
Character table for $C_2^6.S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 8.6.84356875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{3}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{3}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | $16$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{6}$ | ${\href{/padicField/19.3.0.1}{3} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.3.0.1}{3} }^{4}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(71\) | 71.2.0.1 | $x^{2} + 69 x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
71.2.0.1 | $x^{2} + 69 x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
71.4.3.1 | $x^{4} + 71$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
71.8.0.1 | $x^{8} + 53 x^{3} + 22 x^{2} + 19 x + 7$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
\(1901\) | $\Q_{1901}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{1901}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{1901}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{1901}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{1901}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{1901}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $4$ | $2$ | $2$ | $2$ | ||||
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |