Properties

Label 16.6.505241847543359375.1
Degree $16$
Signature $[6, 5]$
Discriminant $-5.052\times 10^{17}$
Root discriminant \(12.78\)
Ramified primes $5,71,1901$
Class number $1$
Class group trivial
Galois group $C_2^6.S_4^2:D_4$ (as 16T1905)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 - 3*x^14 + 10*x^13 - 13*x^12 + 6*x^11 + 12*x^10 - 33*x^9 + 41*x^8 - 33*x^7 + 12*x^6 + 6*x^5 - 13*x^4 + 10*x^3 - 3*x^2 - x + 1)
 
gp: K = bnfinit(y^16 - y^15 - 3*y^14 + 10*y^13 - 13*y^12 + 6*y^11 + 12*y^10 - 33*y^9 + 41*y^8 - 33*y^7 + 12*y^6 + 6*y^5 - 13*y^4 + 10*y^3 - 3*y^2 - y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 - x^15 - 3*x^14 + 10*x^13 - 13*x^12 + 6*x^11 + 12*x^10 - 33*x^9 + 41*x^8 - 33*x^7 + 12*x^6 + 6*x^5 - 13*x^4 + 10*x^3 - 3*x^2 - x + 1);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 - x^15 - 3*x^14 + 10*x^13 - 13*x^12 + 6*x^11 + 12*x^10 - 33*x^9 + 41*x^8 - 33*x^7 + 12*x^6 + 6*x^5 - 13*x^4 + 10*x^3 - 3*x^2 - x + 1)
 

\( x^{16} - x^{15} - 3 x^{14} + 10 x^{13} - 13 x^{12} + 6 x^{11} + 12 x^{10} - 33 x^{9} + 41 x^{8} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[6, 5]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-505241847543359375\) \(\medspace = -\,5^{8}\cdot 71^{3}\cdot 1901^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(12.78\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{1/2}71^{3/4}1901^{1/2}\approx 2384.6235143470617$
Ramified primes:   \(5\), \(71\), \(1901\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-71}) \)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{323}a^{14}-\frac{147}{323}a^{13}+\frac{140}{323}a^{12}+\frac{66}{323}a^{11}-\frac{99}{323}a^{10}-\frac{141}{323}a^{9}+\frac{25}{323}a^{8}+\frac{11}{323}a^{7}+\frac{25}{323}a^{6}-\frac{141}{323}a^{5}-\frac{99}{323}a^{4}+\frac{66}{323}a^{3}+\frac{140}{323}a^{2}-\frac{147}{323}a+\frac{1}{323}$, $\frac{1}{323}a^{15}-\frac{151}{323}a^{13}-\frac{26}{323}a^{12}-\frac{87}{323}a^{11}-\frac{159}{323}a^{10}-\frac{30}{323}a^{9}+\frac{7}{17}a^{8}+\frac{27}{323}a^{7}-\frac{1}{17}a^{6}-\frac{154}{323}a^{5}+\frac{48}{323}a^{4}+\frac{8}{17}a^{3}+\frac{84}{323}a^{2}+\frac{33}{323}a+\frac{147}{323}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $10$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{4}{17}a^{15}+\frac{155}{323}a^{14}-\frac{346}{323}a^{13}+\frac{21}{323}a^{12}+\frac{1034}{323}a^{11}-\frac{1589}{323}a^{10}+\frac{1059}{323}a^{9}+\frac{740}{323}a^{8}-\frac{178}{19}a^{7}+\frac{200}{19}a^{6}-\frac{2874}{323}a^{5}+\frac{577}{323}a^{4}+\frac{464}{323}a^{3}-\frac{58}{19}a^{2}+\frac{395}{323}a+\frac{22}{323}$, $\frac{300}{323}a^{15}-\frac{63}{323}a^{14}-\frac{1155}{323}a^{13}+\frac{2114}{323}a^{12}-\frac{1511}{323}a^{11}-\frac{45}{19}a^{10}+\frac{4082}{323}a^{9}-\frac{6572}{323}a^{8}+\frac{5146}{323}a^{7}-\frac{2107}{323}a^{6}-\frac{1787}{323}a^{5}+\frac{3518}{323}a^{4}-\frac{2163}{323}a^{3}+\frac{1199}{323}a^{2}+\frac{427}{323}a-\frac{537}{323}$, $a$, $\frac{108}{323}a^{15}-\frac{212}{323}a^{14}-\frac{325}{323}a^{13}+\frac{1427}{323}a^{12}-\frac{2070}{323}a^{11}+\frac{1232}{323}a^{10}+\frac{1458}{323}a^{9}-\frac{4825}{323}a^{8}+\frac{6398}{323}a^{7}-\frac{5091}{323}a^{6}+\frac{134}{19}a^{5}+\frac{655}{323}a^{4}-\frac{1452}{323}a^{3}+\frac{1033}{323}a^{2}-\frac{479}{323}a-\frac{163}{323}$, $\frac{124}{323}a^{15}-\frac{63}{323}a^{14}-\frac{419}{323}a^{13}+\frac{876}{323}a^{12}-\frac{1057}{323}a^{11}+\frac{733}{323}a^{10}+\frac{641}{323}a^{9}-\frac{2848}{323}a^{8}+\frac{3947}{323}a^{7}-\frac{3931}{323}a^{6}+\frac{2707}{323}a^{5}-\frac{43}{19}a^{4}-\frac{491}{323}a^{3}+\frac{67}{17}a^{2}-\frac{536}{323}a+\frac{77}{323}$, $\frac{94}{323}a^{15}+\frac{145}{323}a^{14}-\frac{302}{323}a^{13}+\frac{91}{323}a^{12}+\frac{423}{323}a^{11}-\frac{554}{323}a^{10}+\frac{637}{323}a^{9}-\frac{346}{323}a^{8}-\frac{712}{323}a^{7}+\frac{870}{323}a^{6}-\frac{1329}{323}a^{5}+\frac{10}{19}a^{4}-\frac{44}{323}a^{3}-\frac{29}{17}a^{2}+\frac{521}{323}a+\frac{74}{323}$, $\frac{143}{323}a^{15}-\frac{287}{323}a^{14}-\frac{21}{17}a^{13}+\frac{1968}{323}a^{12}-\frac{2959}{323}a^{11}+\frac{1477}{323}a^{10}+\frac{2262}{323}a^{9}-\frac{6567}{323}a^{8}+\frac{8456}{323}a^{7}-\frac{6662}{323}a^{6}+\frac{154}{19}a^{5}+\frac{1039}{323}a^{4}-\frac{2051}{323}a^{3}+\frac{1871}{323}a^{2}-\frac{573}{323}a+\frac{62}{323}$, $\frac{28}{323}a^{15}+\frac{135}{323}a^{14}-\frac{9}{17}a^{13}-\frac{239}{323}a^{12}+\frac{983}{323}a^{11}-\frac{1344}{323}a^{10}+\frac{797}{323}a^{9}+\frac{962}{323}a^{8}-\frac{2927}{323}a^{7}+\frac{3489}{323}a^{6}-\frac{3321}{323}a^{5}+\frac{1868}{323}a^{4}-\frac{400}{323}a^{3}-\frac{389}{323}a^{2}+\frac{27}{19}a-\frac{271}{323}$, $\frac{59}{323}a^{15}-\frac{156}{323}a^{14}-\frac{189}{323}a^{13}+\frac{851}{323}a^{12}-\frac{1540}{323}a^{11}+\frac{895}{323}a^{10}+\frac{1169}{323}a^{9}-\frac{3482}{323}a^{8}+\frac{4076}{323}a^{7}-\frac{3083}{323}a^{6}+\frac{1282}{323}a^{5}+\frac{1157}{323}a^{4}-\frac{1005}{323}a^{3}+\frac{881}{323}a^{2}+\frac{331}{323}a-\frac{12}{19}$, $\frac{39}{323}a^{15}-\frac{24}{323}a^{14}-\frac{100}{323}a^{13}+\frac{471}{323}a^{12}-\frac{455}{323}a^{11}-\frac{16}{19}a^{10}+\frac{1245}{323}a^{9}-\frac{1227}{323}a^{8}+\frac{466}{323}a^{7}+\frac{274}{323}a^{6}-\frac{53}{17}a^{5}+\frac{695}{323}a^{4}-\frac{178}{323}a^{3}-\frac{407}{323}a^{2}+\frac{293}{323}a-\frac{105}{323}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 335.766972694 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{6}\cdot(2\pi)^{5}\cdot 335.766972694 \cdot 1}{2\cdot\sqrt{505241847543359375}}\cr\approx \mathstrut & 0.148025875324 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 - 3*x^14 + 10*x^13 - 13*x^12 + 6*x^11 + 12*x^10 - 33*x^9 + 41*x^8 - 33*x^7 + 12*x^6 + 6*x^5 - 13*x^4 + 10*x^3 - 3*x^2 - x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 - x^15 - 3*x^14 + 10*x^13 - 13*x^12 + 6*x^11 + 12*x^10 - 33*x^9 + 41*x^8 - 33*x^7 + 12*x^6 + 6*x^5 - 13*x^4 + 10*x^3 - 3*x^2 - x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 - x^15 - 3*x^14 + 10*x^13 - 13*x^12 + 6*x^11 + 12*x^10 - 33*x^9 + 41*x^8 - 33*x^7 + 12*x^6 + 6*x^5 - 13*x^4 + 10*x^3 - 3*x^2 - x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 - x^15 - 3*x^14 + 10*x^13 - 13*x^12 + 6*x^11 + 12*x^10 - 33*x^9 + 41*x^8 - 33*x^7 + 12*x^6 + 6*x^5 - 13*x^4 + 10*x^3 - 3*x^2 - x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^6.S_4^2:D_4$ (as 16T1905):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 294912
The 230 conjugacy class representatives for $C_2^6.S_4^2:D_4$
Character table for $C_2^6.S_4^2:D_4$

Intermediate fields

\(\Q(\sqrt{5}) \), 8.6.84356875.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.8.0.1}{8} }^{2}$ ${\href{/padicField/3.8.0.1}{8} }^{2}$ R ${\href{/padicField/7.4.0.1}{4} }^{3}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ ${\href{/padicField/11.4.0.1}{4} }^{3}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ $16$ ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{6}$ ${\href{/padicField/19.3.0.1}{3} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ ${\href{/padicField/23.12.0.1}{12} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ ${\href{/padicField/29.3.0.1}{3} }^{4}{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}$ ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }$ ${\href{/padicField/37.8.0.1}{8} }^{2}$ ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.4.0.1}{4} }^{4}$ $16$ $16$ ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.16.8.1$x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$$2$$8$$8$$C_8\times C_2$$[\ ]_{2}^{8}$
\(71\) Copy content Toggle raw display 71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} + 69 x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
71.4.3.1$x^{4} + 71$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
71.8.0.1$x^{8} + 53 x^{3} + 22 x^{2} + 19 x + 7$$1$$8$$0$$C_8$$[\ ]^{8}$
\(1901\) Copy content Toggle raw display $\Q_{1901}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1901}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1901}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1901}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1901}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{1901}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $4$$2$$2$$2$
Deg $6$$1$$6$$0$$C_6$$[\ ]^{6}$