Properties

Label 16.6.48104202240...0000.1
Degree $16$
Signature $[6, 5]$
Discriminant $-\,2^{24}\cdot 3^{8}\cdot 5^{12}\cdot 179$
Root discriminant $22.65$
Ramified primes $2, 3, 5, 179$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1379

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 2, -42, -128, -114, -290, 72, -30, -133, 30, -8, -10, -14, 8, -2, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 2*x^14 + 8*x^13 - 14*x^12 - 10*x^11 - 8*x^10 + 30*x^9 - 133*x^8 - 30*x^7 + 72*x^6 - 290*x^5 - 114*x^4 - 128*x^3 - 42*x^2 + 2*x + 1)
 
gp: K = bnfinit(x^16 - 2*x^15 - 2*x^14 + 8*x^13 - 14*x^12 - 10*x^11 - 8*x^10 + 30*x^9 - 133*x^8 - 30*x^7 + 72*x^6 - 290*x^5 - 114*x^4 - 128*x^3 - 42*x^2 + 2*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} - 2 x^{14} + 8 x^{13} - 14 x^{12} - 10 x^{11} - 8 x^{10} + 30 x^{9} - 133 x^{8} - 30 x^{7} + 72 x^{6} - 290 x^{5} - 114 x^{4} - 128 x^{3} - 42 x^{2} + 2 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-4810420224000000000000=-\,2^{24}\cdot 3^{8}\cdot 5^{12}\cdot 179\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $22.65$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 179$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{2}$, $\frac{1}{2441102925647642} a^{15} + \frac{55134552792268}{1220551462823821} a^{14} + \frac{151285363838724}{1220551462823821} a^{13} + \frac{297563332139266}{1220551462823821} a^{12} - \frac{95490234035463}{1220551462823821} a^{11} + \frac{75756319505528}{1220551462823821} a^{10} - \frac{149826646651642}{1220551462823821} a^{9} + \frac{443807403594459}{2441102925647642} a^{8} - \frac{188037513373682}{1220551462823821} a^{7} + \frac{197488363528170}{1220551462823821} a^{6} + \frac{11331351993366}{1220551462823821} a^{5} - \frac{807620890649683}{2441102925647642} a^{4} + \frac{750280276410115}{2441102925647642} a^{3} + \frac{55644318164031}{1220551462823821} a^{2} + \frac{607198856678927}{1220551462823821} a + \frac{421384064104211}{2441102925647642}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 38029.1618993 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1379:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 71 conjugacy class representatives for t16n1379 are not computed
Character table for t16n1379 is not computed

Intermediate fields

\(\Q(\sqrt{15}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{3}) \), \(\Q(\zeta_{20})^+\), \(\Q(\zeta_{15})^+\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\zeta_{60})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5Data not computed
$179$$\Q_{179}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{179}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{179}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{179}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{179}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{179}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{179}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{179}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{179}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{179}$$x + 3$$1$$1$$0$Trivial$[\ ]$
179.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
179.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
179.2.1.2$x^{2} + 537$$2$$1$$1$$C_2$$[\ ]_{2}$