Properties

Label 16.6.28603895648...0000.1
Degree $16$
Signature $[6, 5]$
Discriminant $-\,2^{16}\cdot 5^{11}\cdot 19^{7}$
Root discriminant $21.93$
Ramified primes $2, 5, 19$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1782

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-29, 98, -79, 38, -139, 134, 200, -330, -3, 172, 14, -92, -6, 34, -4, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 - 4*x^14 + 34*x^13 - 6*x^12 - 92*x^11 + 14*x^10 + 172*x^9 - 3*x^8 - 330*x^7 + 200*x^6 + 134*x^5 - 139*x^4 + 38*x^3 - 79*x^2 + 98*x - 29)
 
gp: K = bnfinit(x^16 - 4*x^15 - 4*x^14 + 34*x^13 - 6*x^12 - 92*x^11 + 14*x^10 + 172*x^9 - 3*x^8 - 330*x^7 + 200*x^6 + 134*x^5 - 139*x^4 + 38*x^3 - 79*x^2 + 98*x - 29, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} - 4 x^{14} + 34 x^{13} - 6 x^{12} - 92 x^{11} + 14 x^{10} + 172 x^{9} - 3 x^{8} - 330 x^{7} + 200 x^{6} + 134 x^{5} - 139 x^{4} + 38 x^{3} - 79 x^{2} + 98 x - 29 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-2860389564800000000000=-\,2^{16}\cdot 5^{11}\cdot 19^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $21.93$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{19} a^{14} - \frac{8}{19} a^{13} + \frac{4}{19} a^{12} + \frac{1}{19} a^{11} + \frac{8}{19} a^{10} + \frac{4}{19} a^{9} - \frac{4}{19} a^{8} - \frac{3}{19} a^{7} - \frac{9}{19} a^{6} + \frac{6}{19} a^{5} - \frac{7}{19} a^{4} - \frac{1}{19} a^{3} - \frac{5}{19} a^{2} + \frac{6}{19} a - \frac{2}{19}$, $\frac{1}{3940585402334485} a^{15} + \frac{57569443586148}{3940585402334485} a^{14} + \frac{1555034368100212}{3940585402334485} a^{13} + \frac{125152668260103}{3940585402334485} a^{12} + \frac{165604956587396}{788117080466897} a^{11} + \frac{410940708417933}{3940585402334485} a^{10} - \frac{94269619474687}{788117080466897} a^{9} + \frac{1104865950792647}{3940585402334485} a^{8} + \frac{12478228971099}{207399231701815} a^{7} - \frac{652896285109273}{3940585402334485} a^{6} - \frac{405037720859811}{3940585402334485} a^{5} + \frac{1338798117076577}{3940585402334485} a^{4} - \frac{112422073467269}{788117080466897} a^{3} + \frac{217263324939463}{3940585402334485} a^{2} - \frac{1499015847274288}{3940585402334485} a + \frac{967707914658447}{3940585402334485}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 65444.6328507 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1782:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 16384
The 130 conjugacy class representatives for t16n1782 are not computed
Character table for t16n1782 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.2.475.1, 8.4.5487200000.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.8.7$x^{8} + 2 x^{6} + 4 x^{5} + 16$$2$$4$$8$$((C_8 : C_2):C_2):C_2$$[2, 2, 2, 2]^{4}$
2.8.8.7$x^{8} + 2 x^{6} + 4 x^{5} + 16$$2$$4$$8$$((C_8 : C_2):C_2):C_2$$[2, 2, 2, 2]^{4}$
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.7.1$x^{8} - 5$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$
$19$$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.8.7.1$x^{8} + 76$$8$$1$$7$$QD_{16}$$[\ ]_{8}^{2}$