Normalized defining polynomial
\( x^{16} - x^{15} + 7 x^{14} + 9 x^{13} - 8 x^{12} + 159 x^{11} - 2272 x^{10} + 5336 x^{9} - 13011 x^{8} + 113846 x^{7} - 101199 x^{6} - 547626 x^{5} + 514569 x^{4} - 3453444 x^{3} + 4709935 x^{2} + 8557479 x - 7643617 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2185990337293840356281405659=-\,89^{5}\cdot 731531^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $89, 731531$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{50319386914841731793642412208750732527183329435130824743} a^{15} - \frac{10522394029600069065732041065031738165323901058867550078}{50319386914841731793642412208750732527183329435130824743} a^{14} + \frac{12541616600124004784870474034650748195075272963635716404}{50319386914841731793642412208750732527183329435130824743} a^{13} + \frac{23216958745055189919298415412726278613243393433987126641}{50319386914841731793642412208750732527183329435130824743} a^{12} - \frac{12644113400438293180188366595730335781086463835428823686}{50319386914841731793642412208750732527183329435130824743} a^{11} - \frac{18528996030361065014803668204729609861415491063972338535}{50319386914841731793642412208750732527183329435130824743} a^{10} + \frac{4449430541951486918126055405098143442718747997792742985}{50319386914841731793642412208750732527183329435130824743} a^{9} + \frac{13400774250295602181008580380716369586719355895583716642}{50319386914841731793642412208750732527183329435130824743} a^{8} + \frac{6024200999229419839558062594716095883788670693142292184}{50319386914841731793642412208750732527183329435130824743} a^{7} - \frac{23415199157940102164102250599974610724454559179923887548}{50319386914841731793642412208750732527183329435130824743} a^{6} + \frac{9937756421567740595123732786208298725419839713193798781}{50319386914841731793642412208750732527183329435130824743} a^{5} + \frac{8591364404064606812280062766344228780995357768457733480}{50319386914841731793642412208750732527183329435130824743} a^{4} + \frac{5268003392873411637676367789584689013815348555339163964}{50319386914841731793642412208750732527183329435130824743} a^{3} - \frac{4433244906595445084347705926443627958536954744213370079}{50319386914841731793642412208750732527183329435130824743} a^{2} - \frac{9266379335578080158104340319960225665244386291884310492}{50319386914841731793642412208750732527183329435130824743} a + \frac{22884463344298958351947594733853048295491351910751914896}{50319386914841731793642412208750732527183329435130824743}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27322301.6756 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5160960 |
| The 100 conjugacy class representatives for t16n1946 are not computed |
| Character table for t16n1946 is not computed |
Intermediate fields
| 8.6.65106259.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | $16$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | $16$ | $16$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 89 | Data not computed | ||||||
| 731531 | Data not computed | ||||||