Properties

Label 16.6.20769365482...1875.2
Degree $16$
Signature $[6, 5]$
Discriminant $-\,5^{8}\cdot 19^{7}\cdot 29^{6}$
Root discriminant $28.66$
Ramified primes $5, 19, 29$
Class number $2$
Class group $[2]$
Galois group 16T1262

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 33, 298, 758, 388, -1133, -1745, -372, 898, 595, -131, -211, -2, 41, -1, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 5*x^15 - x^14 + 41*x^13 - 2*x^12 - 211*x^11 - 131*x^10 + 595*x^9 + 898*x^8 - 372*x^7 - 1745*x^6 - 1133*x^5 + 388*x^4 + 758*x^3 + 298*x^2 + 33*x - 1)
 
gp: K = bnfinit(x^16 - 5*x^15 - x^14 + 41*x^13 - 2*x^12 - 211*x^11 - 131*x^10 + 595*x^9 + 898*x^8 - 372*x^7 - 1745*x^6 - 1133*x^5 + 388*x^4 + 758*x^3 + 298*x^2 + 33*x - 1, 1)
 

Normalized defining polynomial

\( x^{16} - 5 x^{15} - x^{14} + 41 x^{13} - 2 x^{12} - 211 x^{11} - 131 x^{10} + 595 x^{9} + 898 x^{8} - 372 x^{7} - 1745 x^{6} - 1133 x^{5} + 388 x^{4} + 758 x^{3} + 298 x^{2} + 33 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-207693654820322351171875=-\,5^{8}\cdot 19^{7}\cdot 29^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $28.66$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 19, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{11} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{2} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{3} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{95} a^{14} - \frac{6}{95} a^{13} + \frac{33}{95} a^{11} - \frac{7}{19} a^{10} - \frac{18}{95} a^{9} + \frac{24}{95} a^{8} - \frac{42}{95} a^{7} - \frac{16}{95} a^{6} - \frac{13}{95} a^{5} + \frac{39}{95} a^{4} - \frac{24}{95} a^{3} + \frac{27}{95} a^{2} + \frac{34}{95} a + \frac{34}{95}$, $\frac{1}{221608110725} a^{15} + \frac{245973247}{221608110725} a^{14} - \frac{414141957}{221608110725} a^{13} - \frac{7355987223}{221608110725} a^{12} - \frac{80186017533}{221608110725} a^{11} + \frac{36891309988}{221608110725} a^{10} + \frac{5011627279}{44321622145} a^{9} - \frac{1663114985}{8864324429} a^{8} + \frac{75907606428}{221608110725} a^{7} - \frac{57452104081}{221608110725} a^{6} + \frac{69441080113}{221608110725} a^{5} - \frac{90635961717}{221608110725} a^{4} + \frac{3008326791}{11663584775} a^{3} + \frac{108412620491}{221608110725} a^{2} - \frac{17965359062}{44321622145} a - \frac{4666247102}{221608110725}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 167503.53095 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1262:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 1024
The 43 conjugacy class representatives for t16n1262
Character table for t16n1262 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.725.1, 8.6.3605261875.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $16$ $16$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ $16$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$19$19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$29$29.4.3.3$x^{4} + 58$$4$$1$$3$$C_4$$[\ ]_{4}$
29.4.3.4$x^{4} + 232$$4$$1$$3$$C_4$$[\ ]_{4}$
29.8.0.1$x^{8} + x^{2} - 3 x + 3$$1$$8$$0$$C_8$$[\ ]^{8}$