Normalized defining polynomial
\( x^{16} - 5 x^{15} + 3 x^{14} + 10 x^{13} - 105 x^{12} + 475 x^{11} - 1077 x^{10} + 3500 x^{9} - 7461 x^{8} + 15490 x^{7} - 27628 x^{6} + 29560 x^{5} - 23520 x^{4} + 14400 x^{3} - 4928 x^{2} - 640 x + 256 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2042337557936057128662109375=-\,5^{12}\cdot 101^{6}\cdot 199^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101, 199$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{80} a^{12} + \frac{1}{80} a^{11} + \frac{9}{80} a^{10} - \frac{1}{10} a^{9} + \frac{31}{80} a^{8} + \frac{29}{80} a^{7} - \frac{23}{80} a^{6} - \frac{19}{40} a^{5} - \frac{1}{80} a^{4} + \frac{1}{20} a^{3} - \frac{9}{20} a^{2} + \frac{1}{10} a - \frac{1}{5}$, $\frac{1}{160} a^{13} - \frac{1}{160} a^{12} + \frac{7}{160} a^{11} + \frac{7}{80} a^{10} + \frac{7}{160} a^{9} + \frac{7}{160} a^{8} + \frac{79}{160} a^{7} + \frac{3}{10} a^{6} - \frac{9}{32} a^{5} + \frac{23}{80} a^{4} - \frac{11}{40} a^{3} + \frac{1}{4} a^{2} + \frac{3}{10} a + \frac{1}{5}$, $\frac{1}{63680} a^{14} + \frac{47}{63680} a^{13} + \frac{179}{63680} a^{12} - \frac{335}{6368} a^{11} - \frac{2381}{63680} a^{10} - \frac{15897}{63680} a^{9} - \frac{1241}{12736} a^{8} - \frac{1293}{3184} a^{7} + \frac{8639}{63680} a^{6} + \frac{9283}{31840} a^{5} - \frac{2437}{7960} a^{4} - \frac{3739}{7960} a^{3} - \frac{133}{995} a^{2} + \frac{813}{1990} a - \frac{471}{995}$, $\frac{1}{527539854481108850560} a^{15} + \frac{1930446371589147}{527539854481108850560} a^{14} + \frac{245574975875111739}{105507970896221770112} a^{13} - \frac{170647523822296809}{52753985448110885056} a^{12} + \frac{16134204210451185987}{527539854481108850560} a^{11} + \frac{64441682457984930211}{527539854481108850560} a^{10} - \frac{80786774866866912201}{527539854481108850560} a^{9} + \frac{28549006492081739521}{65942481810138606320} a^{8} + \frac{101635681451429944967}{527539854481108850560} a^{7} + \frac{4504865764168496233}{263769927240554425280} a^{6} - \frac{7311676527245355999}{32971240905069303160} a^{5} + \frac{13857980837784197743}{32971240905069303160} a^{4} + \frac{4589348098571286949}{16485620452534651580} a^{3} + \frac{148547105309210318}{824281022626732579} a^{2} + \frac{132779865111076204}{4121405113133662895} a - \frac{496584947427370628}{4121405113133662895}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28054315.475 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4096 |
| The 64 conjugacy class representatives for t16n1643 are not computed |
| Character table for t16n1643 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.2525.1, 8.8.16098453125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $101$ | 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.2.1 | $x^{4} + 505 x^{2} + 91809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 101.4.0.1 | $x^{4} - x + 12$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $199$ | $\Q_{199}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{199}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 199.2.1.2 | $x^{2} + 398$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 199.4.2.1 | $x^{4} + 2189 x^{2} + 1425636$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |