Properties

Label 16.6.20279400506...1875.2
Degree $16$
Signature $[6, 5]$
Discriminant $-\,3^{8}\cdot 5^{12}\cdot 29^{4}\cdot 179$
Root discriminant $18.59$
Ramified primes $3, 5, 29, 179$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1616

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 2, -2, -2, -42, 67, 74, -161, 8, 77, -4, -20, -2, 9, -3, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 3*x^14 + 9*x^13 - 2*x^12 - 20*x^11 - 4*x^10 + 77*x^9 + 8*x^8 - 161*x^7 + 74*x^6 + 67*x^5 - 42*x^4 - 2*x^3 - 2*x^2 + 2*x + 1)
 
gp: K = bnfinit(x^16 - 2*x^15 - 3*x^14 + 9*x^13 - 2*x^12 - 20*x^11 - 4*x^10 + 77*x^9 + 8*x^8 - 161*x^7 + 74*x^6 + 67*x^5 - 42*x^4 - 2*x^3 - 2*x^2 + 2*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} - 3 x^{14} + 9 x^{13} - 2 x^{12} - 20 x^{11} - 4 x^{10} + 77 x^{9} + 8 x^{8} - 161 x^{7} + 74 x^{6} + 67 x^{5} - 42 x^{4} - 2 x^{3} - 2 x^{2} + 2 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-202794005063232421875=-\,3^{8}\cdot 5^{12}\cdot 29^{4}\cdot 179\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $18.59$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 29, 179$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{1579516531} a^{15} - \frac{131926675}{1579516531} a^{14} + \frac{463592671}{1579516531} a^{13} - \frac{247676914}{1579516531} a^{12} - \frac{15556639}{83132449} a^{11} - \frac{639414867}{1579516531} a^{10} - \frac{178303260}{1579516531} a^{9} - \frac{379129567}{1579516531} a^{8} + \frac{241123089}{1579516531} a^{7} + \frac{433213865}{1579516531} a^{6} - \frac{655701544}{1579516531} a^{5} + \frac{584599043}{1579516531} a^{4} - \frac{75769351}{1579516531} a^{3} - \frac{404931837}{1579516531} a^{2} - \frac{300304656}{1579516531} a + \frac{774496079}{1579516531}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 9404.46488759 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1616:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4096
The 94 conjugacy class representatives for t16n1616 are not computed
Character table for t16n1616 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 4.4.725.1, 4.4.32625.1, 8.8.1064390625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ R R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$29$29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
$179$$\Q_{179}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{179}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{179}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{179}$$x + 3$$1$$1$$0$Trivial$[\ ]$
179.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
179.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
179.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
179.2.1.1$x^{2} - 179$$2$$1$$1$$C_2$$[\ ]_{2}$
179.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
179.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$