Normalized defining polynomial
\( x^{16} - 6 x^{15} - 2 x^{14} + 176 x^{13} - 762 x^{12} - 1148 x^{11} + 13080 x^{10} - 6288 x^{9} - 88060 x^{8} + 96648 x^{7} + 317368 x^{6} - 440080 x^{5} - 713816 x^{4} + 950992 x^{3} + 1176352 x^{2} - 898080 x - 1193888 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1923601836844574356491206656=-\,2^{22}\cdot 2777^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{4} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{8} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{16} a^{12} - \frac{1}{4} a^{4}$, $\frac{1}{16} a^{13} - \frac{1}{4} a^{5}$, $\frac{1}{16} a^{14} - \frac{1}{2} a^{2}$, $\frac{1}{104802014419432109251345587042084832} a^{15} + \frac{1531673109747534320389638342339073}{52401007209716054625672793521042416} a^{14} - \frac{1020705133993959050978208689037661}{52401007209716054625672793521042416} a^{13} - \frac{892777037786353376514649502492731}{52401007209716054625672793521042416} a^{12} - \frac{1598258431606877794269423361170011}{52401007209716054625672793521042416} a^{11} - \frac{173069228671937647404475855925535}{6550125901214506828209099190130302} a^{10} - \frac{1600767124384619318427634949720261}{26200503604858027312836396760521208} a^{9} - \frac{803049710409804704848216552519537}{13100251802429013656418198380260604} a^{8} - \frac{2764677224891773417957980294838457}{26200503604858027312836396760521208} a^{7} - \frac{431705912843381275621138073240617}{13100251802429013656418198380260604} a^{6} + \frac{539724257601592129813911397071391}{13100251802429013656418198380260604} a^{5} + \frac{2757884589180784518406370096797693}{13100251802429013656418198380260604} a^{4} + \frac{2981624413363819023153167223294727}{13100251802429013656418198380260604} a^{3} + \frac{273976734764191523707027207841492}{3275062950607253414104549595065151} a^{2} + \frac{486008083568195628733401647883769}{6550125901214506828209099190130302} a + \frac{633296452033008357019662316056729}{3275062950607253414104549595065151}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16956243.5532 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 54 conjugacy class representatives for t16n1674 are not computed |
| Character table for t16n1674 is not computed |
Intermediate fields
| 4.4.2777.1, 8.6.493550656.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.4 | $x^{4} - 5$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.12.18.64 | $x^{12} + 14 x^{11} + 12 x^{10} + 4 x^{9} + 10 x^{8} + 4 x^{6} + 8 x^{5} + 8 x^{4} + 16 x - 8$ | $4$ | $3$ | $18$ | 12T51 | $[2, 2, 2, 2]^{6}$ | |
| 2777 | Data not computed | ||||||