Properties

Label 16.6.15167412241...9375.1
Degree $16$
Signature $[6, 5]$
Discriminant $-\,3^{4}\cdot 5^{8}\cdot 79\cdot 2791^{4}$
Root discriminant $28.11$
Ramified primes $3, 5, 79, 2791$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1887

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-9, -117, -291, 129, 691, -320, -1221, 1570, -622, 69, -99, 162, -91, 13, 10, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + 10*x^14 + 13*x^13 - 91*x^12 + 162*x^11 - 99*x^10 + 69*x^9 - 622*x^8 + 1570*x^7 - 1221*x^6 - 320*x^5 + 691*x^4 + 129*x^3 - 291*x^2 - 117*x - 9)
 
gp: K = bnfinit(x^16 - 6*x^15 + 10*x^14 + 13*x^13 - 91*x^12 + 162*x^11 - 99*x^10 + 69*x^9 - 622*x^8 + 1570*x^7 - 1221*x^6 - 320*x^5 + 691*x^4 + 129*x^3 - 291*x^2 - 117*x - 9, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{15} + 10 x^{14} + 13 x^{13} - 91 x^{12} + 162 x^{11} - 99 x^{10} + 69 x^{9} - 622 x^{8} + 1570 x^{7} - 1221 x^{6} - 320 x^{5} + 691 x^{4} + 129 x^{3} - 291 x^{2} - 117 x - 9 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-151674122419214312109375=-\,3^{4}\cdot 5^{8}\cdot 79\cdot 2791^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $28.11$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 79, 2791$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{12} a^{14} + \frac{1}{4} a^{13} + \frac{1}{3} a^{12} - \frac{1}{6} a^{11} - \frac{1}{12} a^{10} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{3} a^{6} - \frac{5}{12} a^{5} - \frac{1}{2} a^{4} - \frac{5}{12} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{715142689129970266548} a^{15} - \frac{7555852015024382731}{238380896376656755516} a^{14} - \frac{70174334829182396015}{178785672282492566637} a^{13} + \frac{165444359423198356055}{357571344564985133274} a^{12} - \frac{293070837403911413989}{715142689129970266548} a^{11} + \frac{91526908187428539177}{238380896376656755516} a^{10} + \frac{38545699300919500015}{238380896376656755516} a^{9} + \frac{76507129867763486101}{238380896376656755516} a^{8} - \frac{22593772828111798153}{178785672282492566637} a^{7} + \frac{274553881447291595623}{715142689129970266548} a^{6} + \frac{49121765064275324453}{119190448188328377758} a^{5} - \frac{111593433513771223481}{715142689129970266548} a^{4} - \frac{64552486517993963765}{178785672282492566637} a^{3} - \frac{30711954347763068157}{119190448188328377758} a^{2} + \frac{105073615325433701697}{238380896376656755516} a + \frac{15068938604194635680}{59595224094164188879}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 521123.410159 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1887:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 147456
The 148 conjugacy class representatives for t16n1887 are not computed
Character table for t16n1887 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 8.8.43816955625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ R R ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.8.0.1$x^{8} - x^{3} + 2$$1$$8$$0$$C_8$$[\ ]^{8}$
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$79$$\Q_{79}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{79}$$x + 2$$1$$1$$0$Trivial$[\ ]$
79.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
79.2.1.2$x^{2} + 158$$2$$1$$1$$C_2$$[\ ]_{2}$
79.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
79.4.0.1$x^{4} - x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$
79.4.0.1$x^{4} - x + 3$$1$$4$$0$$C_4$$[\ ]^{4}$
2791Data not computed