Normalized defining polynomial
\( x^{16} - 3 x^{15} - 15 x^{14} + 90 x^{13} + 195 x^{12} - 1328 x^{11} - 712 x^{10} + 10183 x^{9} + 780 x^{8} - 44205 x^{7} - 22884 x^{6} + 161836 x^{5} + 94405 x^{4} - 501358 x^{3} + 62219 x^{2} + 666313 x - 439133 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[6, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-10009146154007580091982470826143=-\,23^{5}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{92} a^{12} + \frac{11}{46} a^{11} + \frac{29}{92} a^{10} + \frac{8}{23} a^{9} + \frac{6}{23} a^{8} + \frac{31}{92} a^{7} - \frac{7}{23} a^{6} + \frac{21}{92} a^{5} - \frac{5}{23} a^{4} - \frac{9}{23} a^{3} - \frac{39}{92} a^{2} - \frac{19}{46} a + \frac{1}{92}$, $\frac{1}{184} a^{13} - \frac{1}{184} a^{12} - \frac{17}{184} a^{11} + \frac{9}{184} a^{10} + \frac{3}{23} a^{9} + \frac{31}{184} a^{8} - \frac{5}{184} a^{7} + \frac{21}{184} a^{6} - \frac{43}{184} a^{5} - \frac{9}{46} a^{4} - \frac{39}{184} a^{3} + \frac{31}{184} a^{2} + \frac{47}{184} a - \frac{1}{8}$, $\frac{1}{184} a^{14} + \frac{5}{46} a^{11} + \frac{3}{184} a^{10} + \frac{79}{184} a^{9} + \frac{45}{92} a^{8} + \frac{11}{92} a^{7} + \frac{13}{92} a^{6} - \frac{3}{8} a^{5} - \frac{67}{184} a^{4} + \frac{10}{23} a^{3} - \frac{9}{23} a^{2} + \frac{19}{46} a - \frac{5}{184}$, $\frac{1}{814568091679809942135694641105808} a^{15} + \frac{920697155898576580931847969835}{407284045839904971067847320552904} a^{14} - \frac{1947005457211365718570214913611}{814568091679809942135694641105808} a^{13} - \frac{1654323683292287374097655811959}{814568091679809942135694641105808} a^{12} + \frac{5328165171659568919677854345611}{407284045839904971067847320552904} a^{11} - \frac{77585668393194896277779026553821}{203642022919952485533923660276452} a^{10} - \frac{84889520176163263874378539371285}{203642022919952485533923660276452} a^{9} + \frac{268727833964324185652838691482773}{814568091679809942135694641105808} a^{8} + \frac{396153614979538089072570434617267}{814568091679809942135694641105808} a^{7} - \frac{82207963567253191504275052756219}{203642022919952485533923660276452} a^{6} + \frac{90563720429150524404394201868815}{407284045839904971067847320552904} a^{5} + \frac{79762814776568387362764899878869}{407284045839904971067847320552904} a^{4} - \frac{322240071928998542379876836288083}{814568091679809942135694641105808} a^{3} - \frac{131955879350839152155082986498343}{814568091679809942135694641105808} a^{2} - \frac{176872061049470922719815812705937}{407284045839904971067847320552904} a - \frac{196310458494528523198643840486995}{814568091679809942135694641105808}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10483241933.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1251 |
| Character table for t16n1251 is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.6.4479348299263.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | $16$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | R | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41 | Data not computed | ||||||