Properties

Label 16.4.98585041000...0000.2
Degree $16$
Signature $[4, 6]$
Discriminant $2^{12}\cdot 5^{12}\cdot 9929^{2}$
Root discriminant $17.77$
Ramified primes $2, 5, 9929$
Class number $1$
Class group Trivial
Galois group 16T1868

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -13, 0, -37, 0, 34, 0, -15, 0, 9, 0, -2, 0, -3, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^14 - 2*x^12 + 9*x^10 - 15*x^8 + 34*x^6 - 37*x^4 - 13*x^2 + 1)
 
gp: K = bnfinit(x^16 - 3*x^14 - 2*x^12 + 9*x^10 - 15*x^8 + 34*x^6 - 37*x^4 - 13*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 3 x^{14} - 2 x^{12} + 9 x^{10} - 15 x^{8} + 34 x^{6} - 37 x^{4} - 13 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(98585041000000000000=2^{12}\cdot 5^{12}\cdot 9929^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $17.77$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 9929$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{10} a^{8} - \frac{1}{2} a^{7} - \frac{2}{5} a^{6} - \frac{1}{2} a^{5} + \frac{1}{10} a^{4} + \frac{1}{10} a^{2} - \frac{1}{2} a + \frac{1}{10}$, $\frac{1}{10} a^{9} + \frac{1}{10} a^{7} - \frac{1}{2} a^{6} - \frac{2}{5} a^{5} - \frac{1}{2} a^{4} + \frac{1}{10} a^{3} - \frac{2}{5} a - \frac{1}{2}$, $\frac{1}{10} a^{10} - \frac{1}{2} a^{2} - \frac{1}{10}$, $\frac{1}{10} a^{11} - \frac{1}{2} a^{3} - \frac{1}{10} a$, $\frac{1}{10} a^{12} - \frac{1}{2} a^{4} - \frac{1}{10} a^{2}$, $\frac{1}{10} a^{13} - \frac{1}{2} a^{5} - \frac{1}{10} a^{3}$, $\frac{1}{430} a^{14} + \frac{9}{215} a^{12} - \frac{11}{430} a^{10} - \frac{7}{430} a^{8} - \frac{1}{2} a^{7} + \frac{53}{430} a^{6} - \frac{1}{2} a^{5} + \frac{36}{215} a^{4} - \frac{3}{43} a^{2} - \frac{1}{2} a + \frac{87}{215}$, $\frac{1}{430} a^{15} + \frac{9}{215} a^{13} - \frac{11}{430} a^{11} - \frac{7}{430} a^{9} - \frac{81}{215} a^{7} - \frac{1}{2} a^{6} - \frac{143}{430} a^{5} - \frac{1}{2} a^{4} - \frac{3}{43} a^{3} - \frac{41}{430} a - \frac{1}{2}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 6378.2727573 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1868:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 73728
The 104 conjugacy class representatives for t16n1868 are not computed
Character table for t16n1868 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 8.4.155140625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.12.12.9$x^{12} - 18 x^{10} + 7 x^{8} - 28 x^{6} - x^{4} - 18 x^{2} - 7$$2$$6$$12$12T58$[2, 2, 2, 2]^{6}$
$5$5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.2$x^{8} + 15 x^{4} + 100$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
9929Data not computed