Normalized defining polynomial
\( x^{16} + 24 x^{14} - 16 x^{13} + 134 x^{12} - 689 x^{11} + 644 x^{10} - 4155 x^{9} + 7346 x^{8} + 5842 x^{7} - 24017 x^{6} + 65468 x^{5} - 32548 x^{4} - 148827 x^{3} + 111824 x^{2} + 69589 x - 53507 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(98340377973019428085802419249=13^{10}\cdot 61^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} - \frac{5}{13} a^{11} + \frac{5}{13} a^{10} + \frac{5}{13} a^{9} + \frac{4}{13} a^{8} - \frac{4}{13} a^{6} + \frac{4}{13} a^{4} + \frac{5}{13} a^{3} + \frac{5}{13} a^{2} - \frac{5}{13} a + \frac{1}{13}$, $\frac{1}{13} a^{13} + \frac{6}{13} a^{11} + \frac{4}{13} a^{10} + \frac{3}{13} a^{9} - \frac{6}{13} a^{8} - \frac{4}{13} a^{7} + \frac{6}{13} a^{6} + \frac{4}{13} a^{5} - \frac{1}{13} a^{4} + \frac{4}{13} a^{3} - \frac{6}{13} a^{2} + \frac{2}{13} a + \frac{5}{13}$, $\frac{1}{13} a^{14} - \frac{5}{13} a^{11} - \frac{1}{13} a^{10} + \frac{3}{13} a^{9} - \frac{2}{13} a^{8} + \frac{6}{13} a^{7} + \frac{2}{13} a^{6} - \frac{1}{13} a^{5} + \frac{6}{13} a^{4} + \frac{3}{13} a^{3} - \frac{2}{13} a^{2} - \frac{4}{13} a - \frac{6}{13}$, $\frac{1}{32023323233686557867542398760656821} a^{15} - \frac{1042690601772004481007006666161872}{32023323233686557867542398760656821} a^{14} + \frac{58012908880187088212846506534477}{32023323233686557867542398760656821} a^{13} + \frac{1167385219847683344748786648077028}{32023323233686557867542398760656821} a^{12} + \frac{13205071337960197822926781967984326}{32023323233686557867542398760656821} a^{11} - \frac{4207618743364657444698215674052594}{10674441077895519289180799586885607} a^{10} - \frac{11015980155062841747105875305545763}{32023323233686557867542398760656821} a^{9} + \frac{3668850818456372848760230824197719}{32023323233686557867542398760656821} a^{8} - \frac{5632592962899829773782881942128152}{32023323233686557867542398760656821} a^{7} + \frac{2750920777996510850811075944035993}{10674441077895519289180799586885607} a^{6} - \frac{129250764462851517567327242572796}{2463332556437427528272492212358217} a^{5} + \frac{4653104946683308802107805937205063}{32023323233686557867542398760656821} a^{4} - \frac{2285272243862542185504621087147587}{32023323233686557867542398760656821} a^{3} + \frac{238819334684116817817753028462184}{2463332556437427528272492212358217} a^{2} + \frac{2657758876480899235745971266179856}{10674441077895519289180799586885607} a - \frac{8584124808188228940758230730948393}{32023323233686557867542398760656821}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 256518424.848 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n875 |
| Character table for t16n875 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.10309.1, 8.4.395451064801.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61 | Data not computed | ||||||