Normalized defining polynomial
\( x^{16} - 8 x^{15} + 2 x^{14} + 126 x^{13} - 644 x^{12} + 1862 x^{11} + 224 x^{10} - 14232 x^{9} + 26238 x^{8} - 5942 x^{7} - 56404 x^{6} + 116978 x^{5} - 93281 x^{4} + 19720 x^{3} + 156920 x^{2} - 151560 x + 168464 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(98340377973019428085802419249=13^{10}\cdot 61^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{12} a^{9} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{4} - \frac{1}{4} a^{3} - \frac{1}{3}$, $\frac{1}{12} a^{10} + \frac{1}{12} a^{8} - \frac{1}{6} a^{7} + \frac{1}{6} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{3} a$, $\frac{1}{12} a^{11} + \frac{1}{12} a^{8} + \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{4} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} + \frac{5}{12} a^{2} + \frac{1}{3}$, $\frac{1}{19032} a^{12} - \frac{1}{3172} a^{11} - \frac{17}{793} a^{10} + \frac{509}{19032} a^{9} + \frac{1111}{9516} a^{8} + \frac{85}{2379} a^{7} - \frac{113}{1464} a^{6} + \frac{1481}{9516} a^{5} - \frac{7}{4758} a^{4} - \frac{4081}{19032} a^{3} + \frac{701}{3172} a^{2} + \frac{439}{4758} a - \frac{890}{2379}$, $\frac{1}{19032} a^{13} - \frac{37}{1586} a^{11} - \frac{353}{19032} a^{10} + \frac{259}{9516} a^{9} + \frac{331}{4758} a^{8} - \frac{187}{6344} a^{7} + \frac{458}{2379} a^{6} + \frac{157}{1586} a^{5} + \frac{509}{19032} a^{4} - \frac{77}{244} a^{3} - \frac{389}{4758} a^{2} + \frac{9}{26} a - \frac{194}{793}$, $\frac{1}{9913239386856} a^{14} - \frac{7}{9913239386856} a^{13} - \frac{9425363}{413051641119} a^{12} + \frac{1357252363}{9913239386856} a^{11} + \frac{122328025793}{9913239386856} a^{10} + \frac{2805856571}{137683880373} a^{9} + \frac{107586193979}{3304413128952} a^{8} + \frac{272059512937}{3304413128952} a^{7} + \frac{2317457845}{21182135442} a^{6} + \frac{340727869777}{9913239386856} a^{5} + \frac{388368310789}{3304413128952} a^{4} - \frac{1136350474115}{2478309846714} a^{3} - \frac{644143823735}{4956619693428} a^{2} - \frac{381386130481}{2478309846714} a - \frac{616481482274}{1239154923357}$, $\frac{1}{386616336087384} a^{15} + \frac{1}{32218028007282} a^{14} - \frac{2309697577}{386616336087384} a^{13} - \frac{93385111}{3717464770071} a^{12} - \frac{167594642401}{21478685338188} a^{11} + \frac{11807154719873}{386616336087384} a^{10} - \frac{1712987902313}{64436056014564} a^{9} - \frac{1199733557377}{21478685338188} a^{8} + \frac{27516321765931}{128872112029128} a^{7} - \frac{1016396041603}{48327042010923} a^{6} - \frac{8584582936897}{193308168043692} a^{5} - \frac{56802498590645}{386616336087384} a^{4} + \frac{28775024430479}{128872112029128} a^{3} + \frac{23532470003693}{193308168043692} a^{2} - \frac{46688399299835}{96654084021846} a - \frac{5300169846110}{48327042010923}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 255676212.326 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n875 |
| Character table for t16n875 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.10309.1, 8.4.395451064801.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.8.7.2 | $x^{8} - 244$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |