Normalized defining polynomial
\( x^{16} - 4 x^{15} - 8 x^{14} + 78 x^{13} - 222 x^{12} + 380 x^{11} - 344 x^{10} - 1326 x^{9} + 7780 x^{8} - 21854 x^{7} + 43374 x^{6} - 68932 x^{5} + 93551 x^{4} - 112974 x^{3} + 113084 x^{2} - 77640 x + 27504 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(98340377973019428085802419249=13^{10}\cdot 61^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{12} a^{10} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{12} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} + \frac{1}{6} a$, $\frac{1}{12} a^{11} + \frac{1}{12} a^{8} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{12} a^{5} + \frac{1}{6} a^{3} - \frac{1}{12} a^{2} - \frac{1}{2} a$, $\frac{1}{312} a^{12} + \frac{5}{156} a^{11} - \frac{11}{312} a^{9} + \frac{3}{26} a^{8} - \frac{1}{39} a^{7} - \frac{29}{312} a^{6} - \frac{23}{156} a^{5} + \frac{5}{78} a^{4} - \frac{113}{312} a^{3} - \frac{17}{39} a^{2} + \frac{1}{26} a + \frac{5}{13}$, $\frac{1}{312} a^{13} + \frac{1}{78} a^{11} - \frac{11}{312} a^{10} - \frac{5}{156} a^{9} - \frac{5}{52} a^{8} - \frac{53}{312} a^{7} - \frac{2}{39} a^{6} + \frac{8}{39} a^{5} - \frac{1}{312} a^{4} - \frac{23}{156} a^{3} + \frac{49}{156} a^{2} + \frac{2}{13}$, $\frac{1}{12168} a^{14} + \frac{1}{4056} a^{13} + \frac{1}{3042} a^{12} + \frac{79}{12168} a^{11} + \frac{295}{12168} a^{10} + \frac{10}{169} a^{9} + \frac{1}{936} a^{8} - \frac{1631}{12168} a^{7} + \frac{329}{3042} a^{6} - \frac{673}{4056} a^{5} - \frac{95}{1352} a^{4} - \frac{629}{1521} a^{3} + \frac{563}{6084} a^{2} + \frac{1273}{3042} a + \frac{71}{507}$, $\frac{1}{6057874781843729832} a^{15} + \frac{8810879928392}{252411449243488743} a^{14} + \frac{269284466901937}{6057874781843729832} a^{13} + \frac{1907783961152879}{3028937390921864916} a^{12} - \frac{60274350620525203}{3028937390921864916} a^{11} - \frac{47506233161053321}{2019291593947909944} a^{10} - \frac{25524884795340754}{757234347730466229} a^{9} + \frac{87231291330121220}{757234347730466229} a^{8} + \frac{296334950331552755}{6057874781843729832} a^{7} + \frac{124830865983880723}{1009645796973954972} a^{6} - \frac{200757872541101153}{1009645796973954972} a^{5} - \frac{547585718607742333}{6057874781843729832} a^{4} - \frac{1007680505829446225}{6057874781843729832} a^{3} + \frac{622248769809144487}{1514468695460932458} a^{2} - \frac{48023199482870983}{504822898486977486} a + \frac{40988746287298066}{84137149747829581}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 337680929.195 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n875 |
| Character table for t16n875 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.10309.1, 8.4.395451064801.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61 | Data not computed | ||||||