Normalized defining polynomial
\( x^{16} - 5 x^{15} - 3 x^{14} - 36 x^{13} + 597 x^{12} - 1056 x^{11} - 3613 x^{10} + 12035 x^{9} + 1951 x^{8} - 73509 x^{7} + 200582 x^{6} - 221534 x^{5} - 9053 x^{4} + 313284 x^{3} - 522759 x^{2} + 266626 x + 21493 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(98340377973019428085802419249=13^{10}\cdot 61^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{12} a^{13} + \frac{1}{12} a^{12} - \frac{1}{4} a^{11} - \frac{1}{12} a^{10} - \frac{1}{12} a^{9} + \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{6} a^{5} + \frac{1}{6} a^{3} - \frac{1}{4} a^{2} + \frac{1}{12} a - \frac{1}{6}$, $\frac{1}{468} a^{14} + \frac{5}{468} a^{13} + \frac{11}{234} a^{12} - \frac{29}{234} a^{11} + \frac{1}{9} a^{10} + \frac{95}{468} a^{9} - \frac{17}{78} a^{8} + \frac{11}{52} a^{7} - \frac{125}{468} a^{6} + \frac{103}{468} a^{5} - \frac{5}{18} a^{4} - \frac{67}{468} a^{3} - \frac{155}{468} a^{2} + \frac{83}{468} a + \frac{139}{468}$, $\frac{1}{133935387124089695744847193774820508204} a^{15} + \frac{655959907704816158510231360179425}{826761648914133924350908603548274742} a^{14} - \frac{983704660385465554417355599751552821}{44645129041363231914949064591606836068} a^{13} + \frac{1081832294954567912475589914023718532}{11161282260340807978737266147901709017} a^{12} - \frac{487909526404980499538238580912895884}{3720427420113602659579088715967236339} a^{11} + \frac{6458377976584838741337902174210474603}{44645129041363231914949064591606836068} a^{10} + \frac{9741550773659645653401325677159816863}{133935387124089695744847193774820508204} a^{9} + \frac{4941769425108674795060291471678628701}{44645129041363231914949064591606836068} a^{8} + \frac{10095347686624705872674056243248216791}{66967693562044847872423596887410254102} a^{7} - \frac{14508036631768035440593715115869742551}{66967693562044847872423596887410254102} a^{6} + \frac{1874462989863605316369158031602209501}{44645129041363231914949064591606836068} a^{5} - \frac{35310278973858113414849974003972468253}{133935387124089695744847193774820508204} a^{4} + \frac{7029532347150546191393666501715253}{413380824457066962175454301774137371} a^{3} + \frac{7232885497047151473273807442136931209}{22322564520681615957474532295803418034} a^{2} - \frac{3269839946361022994594682385143203215}{22322564520681615957474532295803418034} a - \frac{20309968800585074706113188166686328387}{133935387124089695744847193774820508204}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 442568437.03 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n875 |
| Character table for t16n875 is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.10309.1, 8.4.395451064801.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61 | Data not computed | ||||||