Normalized defining polynomial
\( x^{16} - 4 x^{15} + 58 x^{14} - 64 x^{13} + 453 x^{12} + 480 x^{11} - 17804 x^{10} - 57284 x^{9} - 674365 x^{8} - 2238350 x^{7} - 10359495 x^{6} - 27435284 x^{5} - 69777623 x^{4} - 112360206 x^{3} - 124062282 x^{2} - 35452296 x + 177574518 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9558738202625098335096647974912=2^{18}\cdot 43^{3}\cdot 2777^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 43, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{189} a^{14} + \frac{11}{189} a^{13} + \frac{1}{27} a^{12} - \frac{4}{189} a^{11} + \frac{5}{63} a^{10} - \frac{2}{63} a^{9} - \frac{29}{189} a^{8} + \frac{25}{189} a^{7} - \frac{52}{189} a^{6} + \frac{34}{189} a^{5} - \frac{22}{63} a^{4} + \frac{1}{189} a^{3} + \frac{76}{189} a^{2} + \frac{1}{9} a - \frac{1}{21}$, $\frac{1}{9106831402297462262463300235320794111284317161330530155111} a^{15} + \frac{20061789344968934938160635075292206526847690715823658911}{9106831402297462262463300235320794111284317161330530155111} a^{14} - \frac{157373215350245679447664989481634621349007330167755709323}{9106831402297462262463300235320794111284317161330530155111} a^{13} + \frac{103237481439509175542340461377191150775113209665903350929}{9106831402297462262463300235320794111284317161330530155111} a^{12} - \frac{103079948337768738263657509015378611572260118224159953629}{1011870155810829140273700026146754901253813017925614461679} a^{11} + \frac{312186030525092543164189302703960239969851687639360952253}{3035610467432487420821100078440264703761439053776843385037} a^{10} + \frac{133106789443878191314499915751576940614090377049174855754}{9106831402297462262463300235320794111284317161330530155111} a^{9} - \frac{2994531431447611362242086691672195636780663220672930137837}{9106831402297462262463300235320794111284317161330530155111} a^{8} + \frac{1774394003120844902551216940155574456561121414935025375035}{9106831402297462262463300235320794111284317161330530155111} a^{7} - \frac{1702884646835112120885827790892714433514368276254020704003}{9106831402297462262463300235320794111284317161330530155111} a^{6} - \frac{1102534461410223021731760820578015360843858649652597612126}{3035610467432487420821100078440264703761439053776843385037} a^{5} + \frac{510092222473084513481426266440986488754207806206544343407}{1300975914613923180351900033617256301612045308761504307873} a^{4} - \frac{2910713952376671933636394941311812963911199812759599660918}{9106831402297462262463300235320794111284317161330530155111} a^{3} + \frac{160058713923314251488409190473097026598939097203883611225}{337290051936943046757900008715584967084604339308538153893} a^{2} - \frac{354623867131004005262729706345909510698415605910771199862}{1011870155810829140273700026146754901253813017925614461679} a + \frac{13820518226284096653951897992427651820400858425757137919}{30662731994267549705263637155962269734964030846230741263}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 606571721.326 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 49152 |
| The 116 conjugacy class representatives for t16n1851 are not computed |
| Character table for t16n1851 is not computed |
Intermediate fields
| 4.4.2777.1, 8.8.1326417388.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.12.12.5 | $x^{12} + 52 x^{10} - 11 x^{8} - 8 x^{6} - 45 x^{4} - 44 x^{2} - 9$ | $2$ | $6$ | $12$ | 12T51 | $[2, 2, 2, 2]^{6}$ | |
| 43 | Data not computed | ||||||
| 2777 | Data not computed | ||||||