Normalized defining polynomial
\( x^{16} + 40 x^{14} - 176 x^{13} + 388 x^{12} - 4624 x^{11} + 4048 x^{10} - 30832 x^{9} + 84364 x^{8} + 66016 x^{7} + 835200 x^{6} + 1334528 x^{5} + 3150192 x^{4} + 3657696 x^{3} + 2988832 x^{2} + 2109376 x - 1981832 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(90819108489560418567132807168=2^{56}\cdot 3^{8}\cdot 577^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{4} a^{12}$, $\frac{1}{4} a^{13}$, $\frac{1}{4} a^{14}$, $\frac{1}{152657778190598927950014063627263057424764181412} a^{15} - \frac{1368134741470818880415879251655287843646178463}{38164444547649731987503515906815764356191045353} a^{14} + \frac{4560444272790951481545477793711502572035976925}{38164444547649731987503515906815764356191045353} a^{13} + \frac{3915622425847160860702538899148653801118857261}{38164444547649731987503515906815764356191045353} a^{12} - \frac{784621206799038461865448400299128483497003400}{38164444547649731987503515906815764356191045353} a^{11} - \frac{18751903057360481379395083813562592890030692339}{76328889095299463975007031813631528712382090706} a^{10} - \frac{1988382647529510705686569915109247695540376331}{38164444547649731987503515906815764356191045353} a^{9} + \frac{5444428636882813739582379730286411271149684607}{76328889095299463975007031813631528712382090706} a^{8} - \frac{1695180341124555689329581357704526731878624810}{38164444547649731987503515906815764356191045353} a^{7} + \frac{5670183603275858720882243743595195829738753718}{38164444547649731987503515906815764356191045353} a^{6} + \frac{3931910127193828323347476698991636293059697874}{38164444547649731987503515906815764356191045353} a^{5} - \frac{238533097609732163035953519399286059092342179}{537527387995066647711317125448109357129451343} a^{4} + \frac{15590310241592938817729568082787402660052637477}{38164444547649731987503515906815764356191045353} a^{3} + \frac{15354325660432162124204785607568412744476644809}{38164444547649731987503515906815764356191045353} a^{2} + \frac{14508097321470182990284890012891326773471136649}{38164444547649731987503515906815764356191045353} a + \frac{11668378572743616189018475530706677218619612449}{38164444547649731987503515906815764356191045353}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 50142296.8093 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 71 conjugacy class representatives for t16n1379 are not computed |
| Character table for t16n1379 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{6}) \), \(\Q(\zeta_{16})^+\), 4.4.18432.1, \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\zeta_{48})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 577 | Data not computed | ||||||