Normalized defining polynomial
\( x^{16} - 3 x^{15} + x^{14} + 295 x^{13} - 1285 x^{12} - 150 x^{11} + 24126 x^{10} - 115640 x^{9} + 127136 x^{8} + 335929 x^{7} - 1549932 x^{6} + 2210218 x^{5} + 1404898 x^{4} + 1432911 x^{3} - 4972170 x^{2} - 3390345 x - 1778071 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(90390672967514567934462041097091729=61^{4}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $153.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2398390816538597610541725647395234554353825536326625567} a^{15} - \frac{563146990457673344983957939612691954069723534070119132}{2398390816538597610541725647395234554353825536326625567} a^{14} + \frac{245361073992269772537631010623385867136167091849097600}{2398390816538597610541725647395234554353825536326625567} a^{13} + \frac{916986782049951904524811295556993915060541470880981414}{2398390816538597610541725647395234554353825536326625567} a^{12} + \frac{421837183905061442803579271744521191525630550528422791}{2398390816538597610541725647395234554353825536326625567} a^{11} - \frac{1124057021028135722235542685516977444277333806066698929}{2398390816538597610541725647395234554353825536326625567} a^{10} - \frac{306655409151423017235158695262633935144629359531071199}{2398390816538597610541725647395234554353825536326625567} a^{9} + \frac{802854889263760132310930870154660389244639933352963371}{2398390816538597610541725647395234554353825536326625567} a^{8} - \frac{725378488225729821546730759945799127436618147226079496}{2398390816538597610541725647395234554353825536326625567} a^{7} - \frac{285498926144122723175363532829699118921643390077043055}{2398390816538597610541725647395234554353825536326625567} a^{6} + \frac{442042632001077067501101040159364648263558274357273377}{2398390816538597610541725647395234554353825536326625567} a^{5} - \frac{365427918942489737771697665005102511933669347090881453}{2398390816538597610541725647395234554353825536326625567} a^{4} + \frac{95407674807105200858905545373185382124273892760101710}{2398390816538597610541725647395234554353825536326625567} a^{3} - \frac{1150284572027797061890844575314991203527863619828597283}{2398390816538597610541725647395234554353825536326625567} a^{2} + \frac{875065362497932900730882069216281738698438634876346323}{2398390816538597610541725647395234554353825536326625567} a + \frac{525870295497885834528039930992596008001510922349644962}{2398390816538597610541725647395234554353825536326625567}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19039859663.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1194 |
| Character table for t16n1194 is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| $97$ | 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |