Normalized defining polynomial
\( x^{16} - 2 x^{15} + 38 x^{14} + 160 x^{13} - 93 x^{12} + 5706 x^{11} - 2714 x^{10} - 5105 x^{9} - 56512 x^{8} - 1208372 x^{7} - 5394505 x^{6} - 20436854 x^{5} - 50423708 x^{4} - 128866001 x^{3} - 66743118 x^{2} + 3898849 x - 84718247 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(90390672967514567934462041097091729=61^{4}\cdot 97^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $153.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{9} + \frac{1}{3} a^{8} - \frac{1}{6} a^{6} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{10} - \frac{1}{6} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{18} a^{14} - \frac{1}{18} a^{13} - \frac{1}{18} a^{11} - \frac{1}{18} a^{10} - \frac{7}{18} a^{8} + \frac{1}{6} a^{7} + \frac{1}{3} a^{6} - \frac{5}{18} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} + \frac{7}{18} a^{2} - \frac{7}{18} a + \frac{2}{9}$, $\frac{1}{60148379325040561004995851247636302651987163719208666565538} a^{15} + \frac{377760435646602012321068588569321875211514397564684279361}{20049459775013520334998617082545434217329054573069555521846} a^{14} + \frac{1470147793588917449694233773549475181842194752477505603693}{30074189662520280502497925623818151325993581859604333282769} a^{13} + \frac{2478650987167613892533989502537387019012730070870054833829}{60148379325040561004995851247636302651987163719208666565538} a^{12} + \frac{8252665504934495815306126808369423861621971677468364745359}{60148379325040561004995851247636302651987163719208666565538} a^{11} + \frac{1699356631075515157224925473277063025736201981454358194084}{30074189662520280502497925623818151325993581859604333282769} a^{10} + \frac{8662707816296535792625075758615893237340466049505743148107}{60148379325040561004995851247636302651987163719208666565538} a^{9} - \frac{16704454599942464572397173632925139697069676639086997393513}{60148379325040561004995851247636302651987163719208666565538} a^{8} - \frac{229381309937468582491968922865562573578335816869458382784}{3341576629168920055833102847090905702888175762178259253641} a^{7} + \frac{26017880245115871908341279718917522056369384188455987539025}{60148379325040561004995851247636302651987163719208666565538} a^{6} + \frac{12197661633896415511906059802326519939802646041316436966985}{60148379325040561004995851247636302651987163719208666565538} a^{5} - \frac{4210079627680232639939365018274443794156273600953145941701}{10024729887506760167499308541272717108664527286534777760923} a^{4} + \frac{22612357317035513184654433228414043315947078058557430133541}{60148379325040561004995851247636302651987163719208666565538} a^{3} - \frac{5363911901505614827268955006605369312496551962218158971057}{20049459775013520334998617082545434217329054573069555521846} a^{2} - \frac{2018821512107696518034986597553640052419050243907321669142}{10024729887506760167499308541272717108664527286534777760923} a + \frac{145709590303535565064638835526770411104022741396442470}{20899367381876497916954778056857645118828062445868195471}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 74375960429.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T565):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| $97$ | 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 97.8.7.1 | $x^{8} - 97$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |