Normalized defining polynomial
\( x^{16} - 2 x^{15} - 3 x^{14} + 8 x^{12} + 4 x^{11} - x^{10} + 10 x^{9} + 15 x^{8} + 10 x^{7} - x^{6} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(887213286400000000\) \(\medspace = 2^{16}\cdot 5^{8}\cdot 7^{2}\cdot 29^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(13.24\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{15/8}5^{1/2}7^{1/2}29^{1/2}\approx 116.85956436561077$ | ||
Ramified primes: | \(2\), \(5\), \(7\), \(29\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{1169}a^{14}+\frac{22}{167}a^{13}-\frac{529}{1169}a^{12}+\frac{321}{1169}a^{11}+\frac{346}{1169}a^{10}-\frac{115}{1169}a^{9}+\frac{417}{1169}a^{8}-\frac{41}{167}a^{7}+\frac{417}{1169}a^{6}-\frac{115}{1169}a^{5}+\frac{346}{1169}a^{4}+\frac{321}{1169}a^{3}-\frac{529}{1169}a^{2}+\frac{22}{167}a+\frac{1}{1169}$, $\frac{1}{1169}a^{15}+\frac{304}{1169}a^{13}-\frac{43}{1169}a^{12}+\frac{10}{1169}a^{11}+\frac{375}{1169}a^{10}-\frac{577}{1169}a^{9}-\frac{30}{167}a^{8}+\frac{193}{1169}a^{7}-\frac{38}{1169}a^{6}+\frac{521}{1169}a^{5}-\frac{358}{1169}a^{4}+\frac{304}{1169}a^{3}-\frac{30}{167}a^{2}-\frac{335}{1169}a-\frac{22}{167}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $9$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{44}{167}a^{15}-\frac{906}{1169}a^{14}-\frac{43}{167}a^{13}+\frac{768}{1169}a^{12}+\frac{2166}{1169}a^{11}-\frac{415}{1169}a^{10}-\frac{1048}{1169}a^{9}+\frac{2907}{1169}a^{8}+\frac{47}{167}a^{7}-\frac{229}{1169}a^{6}-\frac{1874}{1169}a^{5}-\frac{562}{1169}a^{4}+\frac{367}{1169}a^{3}-\frac{2739}{1169}a^{2}+\frac{64}{167}a-\frac{409}{1169}$, $\frac{214}{167}a^{15}+\frac{2281}{1169}a^{14}+\frac{824}{167}a^{13}+\frac{2216}{1169}a^{12}-\frac{11066}{1169}a^{11}-\frac{11000}{1169}a^{10}-\frac{2342}{1169}a^{9}-\frac{16636}{1169}a^{8}-\frac{4396}{167}a^{7}-\frac{27633}{1169}a^{6}-\frac{10546}{1169}a^{5}-\frac{10657}{1169}a^{4}-\frac{18948}{1169}a^{3}-\frac{7136}{1169}a^{2}+\frac{296}{167}a+\frac{2680}{1169}$, $\frac{2127}{1169}a^{15}+\frac{3611}{1169}a^{14}+\frac{46}{7}a^{13}+\frac{1375}{1169}a^{12}-\frac{15942}{1169}a^{11}-\frac{12312}{1169}a^{10}-\frac{63}{167}a^{9}-\frac{24322}{1169}a^{8}-\frac{39392}{1169}a^{7}-\frac{4469}{167}a^{6}-\frac{10746}{1169}a^{5}-\frac{15005}{1169}a^{4}-\frac{137}{7}a^{3}-\frac{5806}{1169}a^{2}+\frac{2612}{1169}a+\frac{2680}{1169}$, $\frac{828}{1169}a^{15}+\frac{1338}{1169}a^{14}+\frac{3438}{1169}a^{13}-\frac{23}{1169}a^{12}-\frac{948}{167}a^{11}-\frac{5367}{1169}a^{10}+\frac{1242}{1169}a^{9}-\frac{9320}{1169}a^{8}-\frac{14253}{1169}a^{7}-\frac{9118}{1169}a^{6}-\frac{1927}{1169}a^{5}-\frac{3985}{1169}a^{4}-\frac{988}{167}a^{3}-\frac{858}{1169}a^{2}+\frac{1804}{1169}a+\frac{1429}{1169}$, $\frac{507}{1169}a^{15}+\frac{914}{1169}a^{14}+\frac{1825}{1169}a^{13}+\frac{50}{1169}a^{12}-\frac{3926}{1169}a^{11}-\frac{520}{167}a^{10}+\frac{389}{1169}a^{9}-\frac{4541}{1169}a^{8}-\frac{5962}{1169}a^{7}-\frac{5239}{1169}a^{6}+\frac{21}{167}a^{5}+\frac{925}{1169}a^{4}-\frac{3352}{1169}a^{3}+\frac{551}{1169}a^{2}+\frac{816}{1169}a+\frac{1838}{1169}$, $\frac{1299}{1169}a^{15}+\frac{2273}{1169}a^{14}+\frac{4244}{1169}a^{13}+\frac{1398}{1169}a^{12}-\frac{9306}{1169}a^{11}-\frac{6945}{1169}a^{10}-\frac{1683}{1169}a^{9}-\frac{15002}{1169}a^{8}-\frac{25139}{1169}a^{7}-\frac{22165}{1169}a^{6}-\frac{8819}{1169}a^{5}-\frac{11020}{1169}a^{4}-\frac{15963}{1169}a^{3}-\frac{4948}{1169}a^{2}+\frac{808}{1169}a+\frac{2420}{1169}$, $\frac{49}{167}a^{15}+\frac{303}{1169}a^{14}+\frac{287}{167}a^{13}+\frac{587}{1169}a^{12}-\frac{3194}{1169}a^{11}-\frac{3914}{1169}a^{10}+\frac{575}{1169}a^{9}-\frac{2687}{1169}a^{8}-\frac{1339}{167}a^{7}-\frac{7909}{1169}a^{6}-\frac{4297}{1169}a^{5}-\frac{2661}{1169}a^{4}-\frac{5840}{1169}a^{3}-\frac{4089}{1169}a^{2}-\frac{132}{167}a+\frac{520}{1169}$, $\frac{325}{1169}a^{15}+\frac{282}{1169}a^{14}-\frac{2728}{1169}a^{13}-\frac{3000}{1169}a^{12}+\frac{370}{167}a^{11}+\frac{7858}{1169}a^{10}+\frac{3324}{1169}a^{9}+\frac{3753}{1169}a^{8}+\frac{16861}{1169}a^{7}+\frac{18738}{1169}a^{6}+\frac{9474}{1169}a^{5}+\frac{5771}{1169}a^{4}+\frac{1328}{167}a^{3}+\frac{8189}{1169}a^{2}-\frac{1152}{1169}a-\frac{3008}{1169}$, $\frac{633}{1169}a^{15}+\frac{624}{1169}a^{14}+\frac{3029}{1169}a^{13}+\frac{2232}{1169}a^{12}-\frac{4756}{1169}a^{11}-\frac{7443}{1169}a^{10}-\frac{2276}{1169}a^{9}-\frac{6660}{1169}a^{8}-\frac{17190}{1169}a^{7}-\frac{18509}{1169}a^{6}-\frac{7600}{1169}a^{5}-\frac{5209}{1169}a^{4}-\frac{9663}{1169}a^{3}-\frac{5450}{1169}a^{2}+\frac{704}{1169}a+\frac{2248}{1169}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 355.4268966475079 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 355.4268966475079 \cdot 1}{2\cdot\sqrt{887213286400000000}}\cr\approx \mathstrut & 0.185740011574205 \end{aligned}\]
Galois group
$C_2^7.C_2\wr D_4$ (as 16T1772):
A solvable group of order 16384 |
The 148 conjugacy class representatives for $C_2^7.C_2\wr D_4$ |
Character table for $C_2^7.C_2\wr D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 4.4.725.1, 8.6.134560000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | R | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{4}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.2.0.1}{2} }^{5}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | R | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{4}$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.4.0.1}{4} }{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.8.8.8 | $x^{8} - 6 x^{7} + 40 x^{6} - 52 x^{5} + 192 x^{4} + 328 x^{3} + 1376 x^{2} + 1264 x + 1328$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ |
2.8.8.8 | $x^{8} - 6 x^{7} + 40 x^{6} - 52 x^{5} + 192 x^{4} + 328 x^{3} + 1376 x^{2} + 1264 x + 1328$ | $2$ | $4$ | $8$ | $((C_8 : C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ | |
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(7\) | 7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
7.4.0.1 | $x^{4} + 5 x^{2} + 4 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
7.8.0.1 | $x^{8} + 4 x^{3} + 6 x^{2} + 2 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
\(29\) | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
29.4.0.1 | $x^{4} + 2 x^{2} + 15 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |