Normalized defining polynomial
\( x^{16} + 462 x^{14} + 54813 x^{12} + 1686036 x^{10} - 72314220 x^{8} - 4620095568 x^{6} - 28488908646 x^{4} + 1663873447104 x^{2} + 21640582979136 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8840695976077175158703239475879177355264=2^{46}\cdot 3^{14}\cdot 11^{14}\cdot 263^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $313.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 263$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{33} a^{8}$, $\frac{1}{33} a^{9}$, $\frac{1}{165} a^{10} - \frac{1}{165} a^{8} + \frac{1}{5} a^{4} - \frac{2}{5}$, $\frac{1}{165} a^{11} - \frac{1}{165} a^{9} + \frac{1}{5} a^{5} - \frac{2}{5} a$, $\frac{1}{4290} a^{12} - \frac{4}{2145} a^{10} - \frac{1}{330} a^{8} + \frac{1}{5} a^{6} + \frac{9}{65} a^{4} + \frac{24}{65} a^{2} + \frac{7}{65}$, $\frac{1}{8580} a^{13} + \frac{3}{1430} a^{11} - \frac{1}{220} a^{9} - \frac{2}{5} a^{7} + \frac{11}{65} a^{5} + \frac{12}{65} a^{3} - \frac{19}{130} a$, $\frac{1}{384322664209225701444633093211900920} a^{14} - \frac{191543846901770347745928355937}{2066250882845299470132435985010220} a^{12} + \frac{327165096954204313691712445924927}{128107554736408567148211031070633640} a^{10} - \frac{21172309343754137087775499707}{4391456010434957052934698720370} a^{8} - \frac{517201515302938347081919961468449}{2911535334918376526095705251605310} a^{6} + \frac{5455089965833024650444330711311}{28544464067827220844075541682405} a^{4} + \frac{556023824411840600594702941150407}{1941023556612251017397136834403540} a^{2} + \frac{152960448400881384162722320374}{369015885287500193421508903879}$, $\frac{1}{51499237004036243993580834490394723280} a^{15} + \frac{2698317527707040099991744350371}{276877618301270128997746421991369480} a^{13} + \frac{1706621271884249733875343753572203}{1320493256513749845989252166420377520} a^{11} + \frac{189890504644533249573469332973727}{19419018478143380088077237741476140} a^{9} - \frac{186273155883095360711987915013887227}{390145734879062454496824503715111540} a^{7} + \frac{228667956719795052698712414518692}{1912479092544423796553061292721135} a^{5} + \frac{70850938474646285138331012297857071}{260097156586041636331216335810074360} a^{3} + \frac{3765428368638706958162663964196}{9509255505485581907400421753805} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}$, which has order $64$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10066170920000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 61 conjugacy class representatives for t16n1228 are not computed |
| Character table for t16n1228 is not computed |
Intermediate fields
| \(\Q(\sqrt{33}) \), \(\Q(\sqrt{22}) \), \(\Q(\sqrt{6}) \), 4.4.287496.1, 4.4.1149984.1, \(\Q(\sqrt{6}, \sqrt{22})\), 8.8.21159411204096.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.11 | $x^{4} + 10$ | $4$ | $1$ | $11$ | $D_{4}$ | $[2, 3, 4]$ |
| 2.4.10.6 | $x^{4} + 6 x^{2} + 3$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.8.25.65 | $x^{8} + 4 x^{6} + 20 x^{4} + 56$ | $8$ | $1$ | $25$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 3, 7/2, 4, 17/4]^{2}$ | |
| $3$ | 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ |
| 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| 11 | Data not computed | ||||||
| 263 | Data not computed | ||||||