Normalized defining polynomial
\( x^{16} + 396 x^{14} + 41118 x^{12} + 874632 x^{10} - 38679168 x^{8} - 902632896 x^{6} + 7611413040 x^{4} + 118045509120 x^{2} + 308531367936 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8840695976077175158703239475879177355264=2^{46}\cdot 3^{14}\cdot 11^{14}\cdot 263^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $313.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 263$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{132} a^{8}$, $\frac{1}{132} a^{9}$, $\frac{1}{264} a^{10} - \frac{1}{4} a^{6}$, $\frac{1}{264} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{2640} a^{12} + \frac{1}{1320} a^{10} + \frac{1}{1320} a^{8} - \frac{1}{20} a^{6} + \frac{1}{10} a^{4} - \frac{2}{5} a^{2} - \frac{1}{5}$, $\frac{1}{10560} a^{13} + \frac{1}{880} a^{11} - \frac{3}{1760} a^{9} - \frac{3}{40} a^{7} - \frac{1}{10} a^{5} + \frac{2}{5} a^{3} - \frac{1}{20} a$, $\frac{1}{10185615099874473242657144048328960} a^{14} + \frac{6163522706341284135570439841}{848801258322872770221428670694080} a^{12} - \frac{240429782112262003161149417953}{154327501513249594585714303762560} a^{10} + \frac{865571915331586850520451374107}{424400629161436385110714335347040} a^{8} - \frac{695517809335216548416042859493}{4822734422289049830803571992580} a^{6} - \frac{246040374602545905581742107061}{1607578140763016610267857330860} a^{4} - \frac{2375370920326483716199153389967}{6430312563052066441071429323440} a^{2} - \frac{99568363295064010414731033}{305623220677379583701113561}$, $\frac{1}{40742460399497892970628576193315840} a^{15} + \frac{6163522706341284135570439841}{3395205033291491080885714682776320} a^{13} + \frac{3785584959817184406298785725957}{6790410066582982161771429365552640} a^{11} + \frac{865571915331586850520451374107}{1697602516645745540442857341388160} a^{9} - \frac{950600707453739503058467928819}{9645468844578099661607143985160} a^{7} - \frac{246040374602545905581742107061}{6430312563052066441071429323440} a^{5} - \frac{8805683483378550157270582713407}{25721250252208265764285717293760} a^{3} - \frac{202595791986221797057922297}{611246441354759167402227122} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}$, which has order $64$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12586383485500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 61 conjugacy class representatives for t16n1228 are not computed |
| Character table for t16n1228 is not computed |
Intermediate fields
| \(\Q(\sqrt{33}) \), \(\Q(\sqrt{22}) \), \(\Q(\sqrt{6}) \), 4.4.287496.1, 4.4.1149984.1, \(\Q(\sqrt{6}, \sqrt{22})\), 8.8.21159411204096.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.10.6 | $x^{4} + 6 x^{2} + 3$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ |
| 2.4.11.12 | $x^{4} + 26$ | $4$ | $1$ | $11$ | $D_{4}$ | $[2, 3, 4]$ | |
| 2.8.25.65 | $x^{8} + 4 x^{6} + 20 x^{4} + 56$ | $8$ | $1$ | $25$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 3, 7/2, 4, 17/4]^{2}$ | |
| $3$ | 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ |
| 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| 11 | Data not computed | ||||||
| 263 | Data not computed | ||||||