Normalized defining polynomial
\( x^{16} - 2 x^{15} + x^{14} + 4 x^{13} - 5 x^{12} + 2 x^{11} + 3 x^{10} + x^{8} + 3 x^{6} - 2 x^{5} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(882697830400000000\) \(\medspace = 2^{24}\cdot 5^{8}\cdot 367^{2}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(13.23\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}5^{1/2}367^{1/2}\approx 121.16104984688768$ | ||
Ramified primes: | \(2\), \(5\), \(367\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{29}a^{14}+\frac{8}{29}a^{13}-\frac{5}{29}a^{12}-\frac{9}{29}a^{11}-\frac{13}{29}a^{10}+\frac{8}{29}a^{9}+\frac{12}{29}a^{8}+\frac{12}{29}a^{7}-\frac{12}{29}a^{6}+\frac{8}{29}a^{5}+\frac{13}{29}a^{4}-\frac{9}{29}a^{3}+\frac{5}{29}a^{2}+\frac{8}{29}a-\frac{1}{29}$, $\frac{1}{493}a^{15}+\frac{2}{493}a^{14}+\frac{179}{493}a^{13}+\frac{108}{493}a^{12}+\frac{70}{493}a^{11}+\frac{231}{493}a^{10}+\frac{196}{493}a^{9}+\frac{172}{493}a^{8}-\frac{229}{493}a^{7}+\frac{138}{493}a^{6}-\frac{6}{493}a^{5}-\frac{5}{17}a^{4}+\frac{146}{493}a^{3}+\frac{36}{493}a^{2}+\frac{9}{493}a-\frac{81}{493}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $9$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $a$, $\frac{614}{493}a^{15}-\frac{1611}{493}a^{14}+\frac{1412}{493}a^{13}+\frac{2120}{493}a^{12}-\frac{4926}{493}a^{11}+\frac{3726}{493}a^{10}+\frac{1004}{493}a^{9}-\frac{1917}{493}a^{8}+\frac{1820}{493}a^{7}-\frac{999}{493}a^{6}+\frac{2198}{493}a^{5}-\frac{2194}{493}a^{4}-\frac{2632}{493}a^{3}+\frac{21}{493}a^{2}+\frac{1548}{493}a+\frac{433}{493}$, $\frac{332}{493}a^{15}-\frac{917}{493}a^{14}+\frac{931}{493}a^{13}+\frac{30}{17}a^{12}-\frac{2464}{493}a^{11}+\frac{2096}{493}a^{10}+\frac{166}{493}a^{9}-\frac{322}{493}a^{8}+\frac{149}{493}a^{7}+\frac{205}{493}a^{6}+\frac{1136}{493}a^{5}-\frac{1645}{493}a^{4}-\frac{403}{493}a^{3}+\frac{103}{493}a^{2}+\frac{693}{493}a+\frac{325}{493}$, $\frac{9}{17}a^{15}-\frac{787}{493}a^{14}+\frac{1244}{493}a^{13}-\frac{270}{493}a^{12}-\frac{1501}{493}a^{11}+\frac{3358}{493}a^{10}-\frac{2700}{493}a^{9}+\frac{1576}{493}a^{8}+\frac{938}{493}a^{7}-\frac{1025}{493}a^{6}+\frac{2259}{493}a^{5}-\frac{1618}{493}a^{4}+\frac{587}{493}a^{3}-\frac{600}{493}a^{2}-\frac{235}{493}a-\frac{605}{493}$, $\frac{54}{493}a^{15}+\frac{193}{493}a^{14}-\frac{500}{493}a^{13}+\frac{477}{493}a^{12}+\frac{1043}{493}a^{11}-\frac{1449}{493}a^{10}+\frac{911}{493}a^{9}+\frac{1434}{493}a^{8}-\frac{500}{493}a^{7}+\frac{1009}{493}a^{6}+\frac{849}{493}a^{5}+\frac{670}{493}a^{4}+\frac{217}{493}a^{3}-\frac{1575}{493}a^{2}-\frac{806}{493}a-\frac{22}{493}$, $\frac{30}{493}a^{15}+\frac{111}{493}a^{14}-\frac{138}{493}a^{13}+\frac{27}{493}a^{12}+\frac{655}{493}a^{11}-\frac{142}{493}a^{10}-\frac{121}{493}a^{9}+\frac{842}{493}a^{8}+\frac{644}{493}a^{7}+\frac{570}{493}a^{6}+\frac{228}{493}a^{5}+\frac{1243}{493}a^{4}+\frac{470}{493}a^{3}-\frac{1130}{493}a^{2}-\frac{801}{493}a-\frac{509}{493}$, $\frac{229}{493}a^{15}-\frac{171}{493}a^{14}-\frac{523}{493}a^{13}+\frac{1748}{493}a^{12}-\frac{494}{493}a^{11}-\frac{1535}{493}a^{10}+\frac{2877}{493}a^{9}-\frac{205}{493}a^{8}+\frac{157}{493}a^{7}+\frac{24}{17}a^{6}+\frac{989}{493}a^{5}+\frac{1016}{493}a^{4}-\frac{2317}{493}a^{3}-\frac{817}{493}a^{2}-\frac{13}{493}a+\frac{814}{493}$, $\frac{31}{493}a^{15}-\frac{363}{493}a^{14}+\frac{670}{493}a^{13}-\frac{443}{493}a^{12}-\frac{907}{493}a^{11}+\frac{1347}{493}a^{10}-\frac{1268}{493}a^{9}+\frac{8}{17}a^{8}-\frac{860}{493}a^{7}-\frac{482}{493}a^{6}+\frac{358}{493}a^{5}-\frac{1639}{493}a^{4}+\frac{463}{493}a^{3}+\frac{963}{493}a^{2}+\frac{1316}{493}a+\frac{379}{493}$, $\frac{678}{493}a^{15}-\frac{1806}{493}a^{14}+\frac{1410}{493}a^{13}+\frac{2759}{493}a^{12}-\frac{5920}{493}a^{11}+\frac{3482}{493}a^{10}+\frac{2583}{493}a^{9}-\frac{3659}{493}a^{8}+\frac{1529}{493}a^{7}-\frac{123}{493}a^{6}+\frac{709}{493}a^{5}-\frac{2362}{493}a^{4}-\frac{3692}{493}a^{3}+\frac{217}{493}a^{2}+\frac{2498}{493}a+\frac{995}{493}$ | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 407.518266474 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{6}\cdot 407.518266474 \cdot 1}{2\cdot\sqrt{882697830400000000}}\cr\approx \mathstrut & 0.213506080421 \end{aligned}\]
Galois group
$S_4^2:C_2^2$ (as 16T1494):
A solvable group of order 2304 |
The 40 conjugacy class representatives for $S_4^2:C_2^2$ |
Character table for $S_4^2:C_2^2$ |
Intermediate fields
\(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}, \sqrt{5})\), 8.2.939520000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 18 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.2.323950103756800.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/7.6.0.1}{6} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }^{2}{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.2.0.1}{2} }^{5}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{8}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.3.0.1}{3} }^{4}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{4}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.4.6.1 | $x^{4} + 2 x^{3} + 31 x^{2} + 30 x + 183$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
2.12.18.23 | $x^{12} - 12 x^{11} + 48 x^{10} - 344 x^{9} + 8244 x^{8} - 31136 x^{7} + 54848 x^{6} - 23104 x^{5} + 18864 x^{4} - 7360 x^{3} + 5120 x^{2} + 5760 x + 1472$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ | |
\(5\) | 5.16.8.1 | $x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
\(367\) | Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $4$ | $2$ | $2$ | $2$ | ||||
Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |