Normalized defining polynomial
\( x^{16} - 6 x^{15} + 126 x^{14} - 1045 x^{13} + 6648 x^{12} - 16304 x^{11} - 128956 x^{10} + 416011 x^{9} - 557186 x^{8} + 3674172 x^{7} - 55725340 x^{6} + 495788623 x^{5} - 1308728873 x^{4} + 1495727762 x^{3} + 2585237336 x^{2} - 7816045840 x + 9682157008 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8767895277848913089642817986417897713=61^{4}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $203.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{12} - \frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8128210122924897883869187803535284645813444713751296363745999806694545272} a^{15} - \frac{31509087963107493653658622476560283057720074048960396583586312682376091}{1016026265365612235483648475441910580726680589218912045468249975836818159} a^{14} - \frac{109257109863009219400363790221922399105547526510519843480385335698318129}{2032052530731224470967296950883821161453361178437824090936499951673636318} a^{13} - \frac{574257639595324751395058366692309786303014412131210354316130823132178811}{8128210122924897883869187803535284645813444713751296363745999806694545272} a^{12} + \frac{38164883609939683409030442295202015658245514323756399024992047890407853}{2032052530731224470967296950883821161453361178437824090936499951673636318} a^{11} - \frac{495300403750608979327079136641681399598267692702451834365325771499538693}{4064105061462448941934593901767642322906722356875648181872999903347272636} a^{10} + \frac{418949853478601666533799024026321052046883530695844655065171119430895065}{4064105061462448941934593901767642322906722356875648181872999903347272636} a^{9} + \frac{143958863587792320696280146789271504485943333088726589204113330415258931}{8128210122924897883869187803535284645813444713751296363745999806694545272} a^{8} - \frac{648829947892092535396722721822347763130199411332224047130534098078149443}{4064105061462448941934593901767642322906722356875648181872999903347272636} a^{7} + \frac{280150505108515753492123369724625295050565525497240869457540048075362415}{1016026265365612235483648475441910580726680589218912045468249975836818159} a^{6} + \frac{1146809195108026235885059787136313686545424526975788962714215006980494603}{4064105061462448941934593901767642322906722356875648181872999903347272636} a^{5} + \frac{200659465173943247251340181948459907441066832046819399621182901420467911}{8128210122924897883869187803535284645813444713751296363745999806694545272} a^{4} + \frac{2027941400036397665722244526914172004321347942073028446229244047104884803}{8128210122924897883869187803535284645813444713751296363745999806694545272} a^{3} + \frac{611435365419205092003104269383491201899254966704961846894831414329672843}{4064105061462448941934593901767642322906722356875648181872999903347272636} a^{2} + \frac{9972206412028546552296276330386931147254826679075406641511461397033887}{21617580114161962457098903732806608100567672111040681818473403741208897} a + \frac{198799056404613376453990711723446019083038255518620324554837386306539510}{1016026265365612235483648475441910580726680589218912045468249975836818159}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 148088232777 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1223 |
| Character table for t16n1223 is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 97 | Data not computed | ||||||