Normalized defining polynomial
\( x^{16} - x^{15} - 45 x^{14} + x^{13} - 1290 x^{12} + 1891 x^{11} + 18570 x^{10} - 10925 x^{9} + 1273077 x^{8} + 2235206 x^{7} + 9623711 x^{6} + 16338438 x^{5} + 250869331 x^{4} + 134079573 x^{3} + 956191714 x^{2} + 725765798 x + 9255611219 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8767895277848913089642817986417897713=61^{4}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $203.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{244} a^{14} + \frac{5}{61} a^{13} - \frac{6}{61} a^{12} + \frac{57}{244} a^{11} - \frac{33}{244} a^{10} - \frac{73}{244} a^{9} + \frac{35}{122} a^{8} - \frac{23}{61} a^{7} + \frac{35}{244} a^{6} + \frac{33}{244} a^{5} + \frac{11}{244} a^{4} + \frac{18}{61} a^{3} + \frac{25}{122} a^{2} + \frac{3}{244} a - \frac{1}{244}$, $\frac{1}{1166781462244526975753632176969185886601184005540601486084486633828} a^{15} - \frac{378480431318889465842575113495577913461290065459482360599360079}{1166781462244526975753632176969185886601184005540601486084486633828} a^{14} + \frac{4189373281057994431010493182578116551735058553954352463072659298}{291695365561131743938408044242296471650296001385150371521121658457} a^{13} + \frac{35101477554845501208147699766624992438047955559028770932558842405}{1166781462244526975753632176969185886601184005540601486084486633828} a^{12} + \frac{28396381331987088437207403538090772017402660004536766234543804483}{291695365561131743938408044242296471650296001385150371521121658457} a^{11} + \frac{665871080233058165071549195833404740832975486164713415515396313}{291695365561131743938408044242296471650296001385150371521121658457} a^{10} - \frac{272173595665213439231098347198543263162300181485499926953067371327}{1166781462244526975753632176969185886601184005540601486084486633828} a^{9} - \frac{251872795890618072741976747297050534001051679012223305144551839103}{583390731122263487876816088484592943300592002770300743042243316914} a^{8} + \frac{1377349676305754058175730147784634281067560253555834031921615411}{11552291705391356195580516603655305807932514906342588971133531028} a^{7} - \frac{103170767809118539325974979719474360530270531421703698778384317091}{291695365561131743938408044242296471650296001385150371521121658457} a^{6} - \frac{178717969220964990192831752754815972456027463937722361804061559313}{583390731122263487876816088484592943300592002770300743042243316914} a^{5} - \frac{357675068503622378621303820448017047175817271380923108547931781869}{1166781462244526975753632176969185886601184005540601486084486633828} a^{4} - \frac{69191576356000704542012782521441348422138644079108416894123253711}{583390731122263487876816088484592943300592002770300743042243316914} a^{3} + \frac{4033098965945654953882445646002443318201004013449767431054797441}{11552291705391356195580516603655305807932514906342588971133531028} a^{2} - \frac{42007290532992461998041585855201306406664968224470476637070909967}{583390731122263487876816088484592943300592002770300743042243316914} a + \frac{238361630758751849445325266601334077838840143456672450588185899529}{1166781462244526975753632176969185886601184005540601486084486633828}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 153057741363 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 40 conjugacy class representatives for t16n1223 |
| Character table for t16n1223 is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 97 | Data not computed | ||||||