Normalized defining polynomial
\( x^{16} - 3 x^{15} + 80 x^{14} - 652 x^{13} + 1919 x^{12} - 13362 x^{11} + 3799 x^{10} + 330544 x^{9} - 2353771 x^{8} + 5701089 x^{7} - 28706604 x^{6} - 76994271 x^{5} - 116028954 x^{4} - 181534839 x^{3} - 1302349077 x^{2} + 666267339 x + 125218271 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8767895277848913089642817986417897713=61^{4}\cdot 97^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $203.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{103} a^{14} + \frac{32}{103} a^{13} - \frac{50}{103} a^{12} + \frac{34}{103} a^{11} - \frac{2}{103} a^{10} - \frac{3}{103} a^{9} + \frac{14}{103} a^{8} + \frac{34}{103} a^{7} - \frac{51}{103} a^{6} + \frac{44}{103} a^{5} - \frac{1}{103} a^{4} + \frac{50}{103} a^{3} + \frac{44}{103} a^{2} - \frac{1}{103} a - \frac{12}{103}$, $\frac{1}{328085039267960226355409649219365190069800737628664862762323787085499847} a^{15} - \frac{497390202164498876839490018826993933965499526246062804295458742585729}{328085039267960226355409649219365190069800737628664862762323787085499847} a^{14} - \frac{146658920516360151339240070650873073513936357722861108374943179784573693}{328085039267960226355409649219365190069800737628664862762323787085499847} a^{13} + \frac{8981989562611772185711403643618505965153427122434250597053933029532673}{328085039267960226355409649219365190069800737628664862762323787085499847} a^{12} + \frac{113745555738618569056377785420596467842296526230864953295665357699883774}{328085039267960226355409649219365190069800737628664862762323787085499847} a^{11} - \frac{40614127731701064324524516010051915678686839286789912663843242498091490}{328085039267960226355409649219365190069800737628664862762323787085499847} a^{10} - \frac{90929421801894661556843886718194087882264495610102900911066003514837916}{328085039267960226355409649219365190069800737628664862762323787085499847} a^{9} + \frac{122576485823209064048418440131653214307680329616497114328226533464796348}{328085039267960226355409649219365190069800737628664862762323787085499847} a^{8} - \frac{56767560014145628245819401795864270093628804188695348974486786587120806}{328085039267960226355409649219365190069800737628664862762323787085499847} a^{7} + \frac{160121390644254631212350932749860631147147149607069900929041008424576835}{328085039267960226355409649219365190069800737628664862762323787085499847} a^{6} + \frac{64315289645090204169853135295135137130604739085134282771220405024305090}{328085039267960226355409649219365190069800737628664862762323787085499847} a^{5} - \frac{31962467356729908585587386570389626313515063928882506558689752595050814}{328085039267960226355409649219365190069800737628664862762323787085499847} a^{4} - \frac{154283467820672133928180983232348439842841712599632691462552246143088548}{328085039267960226355409649219365190069800737628664862762323787085499847} a^{3} + \frac{43700693193507267201129428847377809875905771379126726998029956871703983}{328085039267960226355409649219365190069800737628664862762323787085499847} a^{2} - \frac{62326876461490645851031134636542983422670106773076864119964882905156009}{328085039267960226355409649219365190069800737628664862762323787085499847} a + \frac{91721634797501794979881169983196900485243632703387956115368022565571891}{328085039267960226355409649219365190069800737628664862762323787085499847}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 123773712241 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times OD_{16}).D_4$ (as 16T591):
| A solvable group of order 256 |
| The 28 conjugacy class representatives for $(C_2\times OD_{16}).D_4$ |
| Character table for $(C_2\times OD_{16}).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{97}) \), 4.4.912673.1, 8.8.80798284478113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 97 | Data not computed | ||||||