Properties

Label 16.4.84775038809...2464.4
Degree $16$
Signature $[4, 6]$
Discriminant $2^{56}\cdot 7^{6}$
Root discriminant $23.47$
Ramified primes $2, 7$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^4.C_2^3.C_2$ (as 16T516)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-2, 16, 160, 432, 580, 544, 488, 336, 114, 24, 56, 72, 28, -8, -8, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^14 - 8*x^13 + 28*x^12 + 72*x^11 + 56*x^10 + 24*x^9 + 114*x^8 + 336*x^7 + 488*x^6 + 544*x^5 + 580*x^4 + 432*x^3 + 160*x^2 + 16*x - 2)
 
gp: K = bnfinit(x^16 - 8*x^14 - 8*x^13 + 28*x^12 + 72*x^11 + 56*x^10 + 24*x^9 + 114*x^8 + 336*x^7 + 488*x^6 + 544*x^5 + 580*x^4 + 432*x^3 + 160*x^2 + 16*x - 2, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{14} - 8 x^{13} + 28 x^{12} + 72 x^{11} + 56 x^{10} + 24 x^{9} + 114 x^{8} + 336 x^{7} + 488 x^{6} + 544 x^{5} + 580 x^{4} + 432 x^{3} + 160 x^{2} + 16 x - 2 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(8477503880968183742464=2^{56}\cdot 7^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $23.47$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{7} a^{14} + \frac{3}{7} a^{13} - \frac{3}{7} a^{12} - \frac{1}{7} a^{11} + \frac{2}{7} a^{10} - \frac{2}{7} a^{9} - \frac{3}{7} a^{7} - \frac{2}{7} a^{5} - \frac{1}{7} a^{4} + \frac{3}{7} a^{3} - \frac{2}{7} a^{2} + \frac{1}{7} a + \frac{3}{7}$, $\frac{1}{748614198695671} a^{15} + \frac{7230150147158}{106944885527953} a^{14} - \frac{331405178087065}{748614198695671} a^{13} - \frac{325485886911674}{748614198695671} a^{12} + \frac{349667519817383}{748614198695671} a^{11} + \frac{187924577337601}{748614198695671} a^{10} + \frac{208297494868945}{748614198695671} a^{9} - \frac{110333292797507}{748614198695671} a^{8} - \frac{72360020149121}{748614198695671} a^{7} + \frac{795560612206}{68055836245061} a^{6} + \frac{101966757416242}{748614198695671} a^{5} - \frac{47275001325644}{748614198695671} a^{4} - \frac{338276504462264}{748614198695671} a^{3} + \frac{32363981165740}{106944885527953} a^{2} + \frac{11073139115066}{106944885527953} a - \frac{28175513553469}{748614198695671}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 79819.6509104 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4.C_2^3.C_2$ (as 16T516):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 34 conjugacy class representatives for $C_2^4.C_2^3.C_2$
Character table for $C_2^4.C_2^3.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), 4.2.1792.1, 4.4.14336.1, 4.2.2048.1, 8.4.822083584.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$7$7.2.1.2$x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.2.1.2$x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$