Normalized defining polynomial
\( x^{16} + 8 x^{14} + 20 x^{12} + 8 x^{10} - 245 x^{8} - 884 x^{6} - 543 x^{4} + 618 x^{2} + 841 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8360278233280610761179136=2^{24}\cdot 163^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 163$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{55} a^{8} + \frac{4}{55} a^{6} - \frac{3}{55} a^{4} - \frac{14}{55} a^{2} - \frac{21}{55}$, $\frac{1}{55} a^{9} + \frac{4}{55} a^{7} - \frac{3}{55} a^{5} - \frac{14}{55} a^{3} - \frac{21}{55} a$, $\frac{1}{55} a^{10} - \frac{19}{55} a^{6} - \frac{2}{55} a^{4} - \frac{4}{11} a^{2} - \frac{26}{55}$, $\frac{1}{55} a^{11} - \frac{19}{55} a^{7} - \frac{2}{55} a^{5} - \frac{4}{11} a^{3} - \frac{26}{55} a$, $\frac{1}{605} a^{12} - \frac{1}{121} a^{10} + \frac{1}{605} a^{8} + \frac{173}{605} a^{6} + \frac{41}{121} a^{4} + \frac{69}{605} a^{2} + \frac{19}{121}$, $\frac{1}{1210} a^{13} - \frac{1}{1210} a^{12} + \frac{3}{605} a^{11} - \frac{3}{605} a^{10} + \frac{1}{1210} a^{9} - \frac{1}{1210} a^{8} - \frac{18}{605} a^{7} + \frac{18}{605} a^{6} - \frac{211}{605} a^{5} + \frac{211}{605} a^{4} + \frac{227}{605} a^{3} - \frac{227}{605} a^{2} - \frac{191}{1210} a + \frac{191}{1210}$, $\frac{1}{21780} a^{14} - \frac{1}{1980} a^{12} - \frac{167}{21780} a^{10} + \frac{13}{21780} a^{8} - \frac{866}{1815} a^{6} - \frac{2042}{5445} a^{4} + \frac{307}{1980} a^{2} - \frac{7313}{21780}$, $\frac{1}{1263240} a^{15} - \frac{1}{43560} a^{14} + \frac{7}{22968} a^{13} - \frac{5}{8712} a^{12} + \frac{7357}{1263240} a^{11} + \frac{347}{43560} a^{10} - \frac{5531}{1263240} a^{9} + \frac{347}{43560} a^{8} - \frac{3215}{10527} a^{7} - \frac{668}{1815} a^{6} - \frac{9269}{315810} a^{5} + \frac{1069}{2178} a^{4} - \frac{34649}{114840} a^{3} - \frac{2281}{8712} a^{2} + \frac{343543}{1263240} a - \frac{4423}{43560}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2272130.30362 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 40 conjugacy class representatives for t16n1543 |
| Character table for t16n1543 is not computed |
Intermediate fields
| 4.4.26569.1, 8.4.45178352704.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.12.24.229 | $x^{12} - 8 x^{11} - 2 x^{10} + 4 x^{8} - 8 x^{6} + 8 x^{5} - 4 x^{4} + 16 x^{3} + 8 x^{2} + 8$ | $4$ | $3$ | $24$ | 12T94 | $[2, 2, 3, 3]^{12}$ | |
| $163$ | 163.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 163.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 163.6.4.1 | $x^{6} + 5216 x^{3} + 35363339$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 163.6.4.1 | $x^{6} + 5216 x^{3} + 35363339$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |