Properties

Label 16.4.83344647990...0000.3
Degree $16$
Signature $[4, 6]$
Discriminant $2^{8}\cdot 5^{8}\cdot 11^{6}\cdot 19^{6}$
Root discriminant $23.45$
Ramified primes $2, 5, 11, 19$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^2.C_2^5.C_2$ (as 16T511)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![661, -1867, 583, 1689, 212, -1695, -636, 919, 629, -498, -77, 84, -21, 23, -2, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 - 2*x^14 + 23*x^13 - 21*x^12 + 84*x^11 - 77*x^10 - 498*x^9 + 629*x^8 + 919*x^7 - 636*x^6 - 1695*x^5 + 212*x^4 + 1689*x^3 + 583*x^2 - 1867*x + 661)
 
gp: K = bnfinit(x^16 - 4*x^15 - 2*x^14 + 23*x^13 - 21*x^12 + 84*x^11 - 77*x^10 - 498*x^9 + 629*x^8 + 919*x^7 - 636*x^6 - 1695*x^5 + 212*x^4 + 1689*x^3 + 583*x^2 - 1867*x + 661, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} - 2 x^{14} + 23 x^{13} - 21 x^{12} + 84 x^{11} - 77 x^{10} - 498 x^{9} + 629 x^{8} + 919 x^{7} - 636 x^{6} - 1695 x^{5} + 212 x^{4} + 1689 x^{3} + 583 x^{2} - 1867 x + 661 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(8334464799024100000000=2^{8}\cdot 5^{8}\cdot 11^{6}\cdot 19^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $23.45$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{62} a^{14} - \frac{29}{62} a^{13} + \frac{15}{31} a^{12} + \frac{13}{31} a^{11} - \frac{9}{62} a^{10} + \frac{23}{62} a^{9} + \frac{5}{62} a^{8} - \frac{4}{31} a^{7} + \frac{15}{31} a^{6} + \frac{9}{62} a^{5} - \frac{13}{62} a^{4} + \frac{19}{62} a^{3} + \frac{2}{31} a^{2} + \frac{8}{31} a + \frac{15}{62}$, $\frac{1}{3733151729975051480878} a^{15} + \frac{11247418228674181080}{1866575864987525740439} a^{14} - \frac{500276824584042069037}{3733151729975051480878} a^{13} + \frac{832766034863917591693}{1866575864987525740439} a^{12} - \frac{606715208132906711079}{3733151729975051480878} a^{11} - \frac{883446753608388832143}{1866575864987525740439} a^{10} + \frac{126049556215783586829}{1866575864987525740439} a^{9} + \frac{569960799887808778643}{3733151729975051480878} a^{8} + \frac{240817236898345952125}{1866575864987525740439} a^{7} - \frac{639306528421478814463}{3733151729975051480878} a^{6} + \frac{199946349285218447754}{1866575864987525740439} a^{5} + \frac{588696037133617834994}{1866575864987525740439} a^{4} - \frac{279784213448651001139}{3733151729975051480878} a^{3} - \frac{916856881391235541305}{1866575864987525740439} a^{2} + \frac{249204150601764393513}{3733151729975051480878} a + \frac{718595833203167754209}{3733151729975051480878}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 38869.6846855 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2.C_2^5.C_2$ (as 16T511):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 46 conjugacy class representatives for $C_2^2.C_2^5.C_2$
Character table for $C_2^2.C_2^5.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.5225.1, 4.2.475.1, 4.2.275.1, 8.4.91293290000.2, 8.4.91293290000.1, 8.4.27300625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.8.8.1$x^{8} + 28 x^{4} + 144$$2$$4$$8$$C_4\times C_2$$[2]^{4}$
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$11$11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.8.6.2$x^{8} - 781 x^{4} + 290521$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.4.3.1$x^{4} + 76$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
19.4.3.1$x^{4} + 76$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$