Properties

Label 16.4.83344647990...0000.1
Degree $16$
Signature $[4, 6]$
Discriminant $2^{8}\cdot 5^{8}\cdot 11^{6}\cdot 19^{6}$
Root discriminant $23.45$
Ramified primes $2, 5, 11, 19$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^2.C_2^5.C_2$ (as 16T486)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![131, 1007, 2200, 1435, -354, -507, 163, 375, -140, -462, 60, 86, 12, -15, -3, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^14 - 15*x^13 + 12*x^12 + 86*x^11 + 60*x^10 - 462*x^9 - 140*x^8 + 375*x^7 + 163*x^6 - 507*x^5 - 354*x^4 + 1435*x^3 + 2200*x^2 + 1007*x + 131)
 
gp: K = bnfinit(x^16 - 3*x^14 - 15*x^13 + 12*x^12 + 86*x^11 + 60*x^10 - 462*x^9 - 140*x^8 + 375*x^7 + 163*x^6 - 507*x^5 - 354*x^4 + 1435*x^3 + 2200*x^2 + 1007*x + 131, 1)
 

Normalized defining polynomial

\( x^{16} - 3 x^{14} - 15 x^{13} + 12 x^{12} + 86 x^{11} + 60 x^{10} - 462 x^{9} - 140 x^{8} + 375 x^{7} + 163 x^{6} - 507 x^{5} - 354 x^{4} + 1435 x^{3} + 2200 x^{2} + 1007 x + 131 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(8334464799024100000000=2^{8}\cdot 5^{8}\cdot 11^{6}\cdot 19^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $23.45$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{23} a^{13} - \frac{2}{23} a^{12} + \frac{6}{23} a^{11} - \frac{3}{23} a^{10} + \frac{3}{23} a^{9} - \frac{7}{23} a^{8} + \frac{10}{23} a^{7} - \frac{1}{23} a^{6} - \frac{4}{23} a^{5} + \frac{5}{23} a^{4} + \frac{7}{23} a^{3} - \frac{11}{23} a^{2} + \frac{11}{23} a + \frac{9}{23}$, $\frac{1}{23} a^{14} + \frac{2}{23} a^{12} + \frac{9}{23} a^{11} - \frac{3}{23} a^{10} - \frac{1}{23} a^{9} - \frac{4}{23} a^{8} - \frac{4}{23} a^{7} - \frac{6}{23} a^{6} - \frac{3}{23} a^{5} - \frac{6}{23} a^{4} + \frac{3}{23} a^{3} - \frac{11}{23} a^{2} + \frac{8}{23} a - \frac{5}{23}$, $\frac{1}{976530711280452055937971} a^{15} + \frac{1578925254012298570154}{976530711280452055937971} a^{14} - \frac{20475718796650313370084}{976530711280452055937971} a^{13} - \frac{184141306874566285826002}{976530711280452055937971} a^{12} + \frac{156333565368912493470027}{976530711280452055937971} a^{11} + \frac{89303240060574064525714}{976530711280452055937971} a^{10} + \frac{93627146720535452027765}{976530711280452055937971} a^{9} + \frac{229628885176274755574851}{976530711280452055937971} a^{8} - \frac{469800705840871195939845}{976530711280452055937971} a^{7} - \frac{8785235135699089082736}{976530711280452055937971} a^{6} - \frac{11149661486090205232659}{42457857012193567649477} a^{5} - \frac{313334406867029729801745}{976530711280452055937971} a^{4} + \frac{262600215819154277686926}{976530711280452055937971} a^{3} - \frac{413297472267644674396298}{976530711280452055937971} a^{2} - \frac{274076424900748560081525}{976530711280452055937971} a - \frac{144348644565689810608464}{976530711280452055937971}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 27714.0253633 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2.C_2^5.C_2$ (as 16T486):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 34 conjugacy class representatives for $C_2^2.C_2^5.C_2$
Character table for $C_2^2.C_2^5.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.2.475.1, 4.4.5225.1, 4.2.275.1, 8.4.27300625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.0.1$x^{8} + x^{4} + x^{3} + x + 1$$1$$8$$0$$C_8$$[\ ]^{8}$
2.8.8.4$x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$$2$$4$$8$$C_8$$[2]^{4}$
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$11$11.4.2.2$x^{4} - 11 x^{2} + 847$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
11.8.4.1$x^{8} + 484 x^{4} - 1331 x^{2} + 58564$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$19$19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.2$x^{4} - 19 x^{2} + 722$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$