Normalized defining polynomial
\( x^{16} - 2 x^{15} + 2 x^{14} + 17 x^{13} - 53 x^{12} + 160 x^{11} - 567 x^{10} + 1306 x^{9} - 3585 x^{8} + 6949 x^{7} - 7552 x^{6} + 9035 x^{5} - 11178 x^{4} + 4713 x^{3} + 2747 x^{2} - 2323 x + 691 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(825241970563213134765625=5^{12}\cdot 11^{10}\cdot 19^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{20} a^{12} - \frac{1}{4} a^{11} - \frac{3}{20} a^{10} - \frac{1}{2} a^{9} + \frac{2}{5} a^{8} - \frac{1}{20} a^{7} + \frac{3}{20} a^{6} - \frac{1}{20} a^{5} + \frac{1}{10} a^{4} + \frac{1}{5} a^{3} - \frac{1}{4} a^{2} + \frac{7}{20} a - \frac{1}{20}$, $\frac{1}{20} a^{13} + \frac{1}{10} a^{11} - \frac{1}{4} a^{10} - \frac{1}{10} a^{9} - \frac{1}{20} a^{8} - \frac{1}{10} a^{7} + \frac{1}{5} a^{6} - \frac{3}{20} a^{5} - \frac{3}{10} a^{4} - \frac{1}{4} a^{3} + \frac{1}{10} a^{2} + \frac{1}{5} a - \frac{1}{4}$, $\frac{1}{380} a^{14} - \frac{1}{190} a^{13} + \frac{3}{380} a^{12} - \frac{1}{95} a^{11} + \frac{9}{76} a^{10} - \frac{167}{380} a^{9} + \frac{12}{95} a^{8} - \frac{153}{380} a^{7} - \frac{49}{190} a^{6} - \frac{101}{380} a^{5} - \frac{31}{380} a^{4} + \frac{39}{95} a^{3} + \frac{23}{76} a^{2} + \frac{6}{95} a + \frac{69}{380}$, $\frac{1}{38681589978927873031741220} a^{15} - \frac{3177551192513466987405}{3868158997892787303174122} a^{14} - \frac{67097002162893648647806}{9670397494731968257935305} a^{13} - \frac{462747673893245347810669}{19340794989463936515870610} a^{12} - \frac{6030490578881973315820779}{38681589978927873031741220} a^{11} + \frac{4021601758204216284759319}{19340794989463936515870610} a^{10} - \frac{10817577195256393497185}{3868158997892787303174122} a^{9} + \frac{1016180489043231124724573}{19340794989463936515870610} a^{8} + \frac{5484151600666719600878891}{19340794989463936515870610} a^{7} + \frac{654192494333630698856059}{2035873156785677527986380} a^{6} + \frac{2836914631477518324206}{508968289196419381996595} a^{5} - \frac{2569515131186518353968959}{19340794989463936515870610} a^{4} + \frac{1861636003650708034134621}{19340794989463936515870610} a^{3} + \frac{536309343812912357262917}{9670397494731968257935305} a^{2} + \frac{3865034430950168967504859}{7736317995785574606348244} a - \frac{8407243796131769715702447}{38681589978927873031741220}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 252270.619051 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T646):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.15125.1, 4.2.1375.1, 4.2.275.1, 8.4.228765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.8.6.1 | $x^{8} + 143 x^{4} + 5929$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |