Normalized defining polynomial
\( x^{16} + 16 x^{14} - 1200 x^{12} - 22000 x^{10} + 295164 x^{8} + 7447904 x^{6} + 33838432 x^{4} + 7389152 x^{2} + 334084 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8201794211074936440642419329859584=2^{66}\cdot 17^{4}\cdot 191^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $131.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 191$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{16} a^{8} - \frac{1}{2} a^{7} - \frac{1}{8}$, $\frac{1}{16} a^{9} - \frac{1}{8} a$, $\frac{1}{272} a^{10} - \frac{1}{272} a^{8} - \frac{1}{2} a^{7} - \frac{7}{17} a^{6} + \frac{2}{17} a^{4} + \frac{39}{136} a^{2} + \frac{1}{8}$, $\frac{1}{272} a^{11} - \frac{1}{272} a^{9} - \frac{7}{17} a^{7} + \frac{2}{17} a^{5} + \frac{39}{136} a^{3} + \frac{1}{8} a$, $\frac{1}{4624} a^{12} - \frac{1}{4624} a^{10} - \frac{27}{4624} a^{8} - \frac{1}{2} a^{7} - \frac{100}{289} a^{6} - \frac{369}{2312} a^{4} + \frac{57}{136} a^{2} + \frac{3}{8}$, $\frac{1}{4624} a^{13} - \frac{1}{4624} a^{11} - \frac{27}{4624} a^{9} - \frac{100}{289} a^{7} - \frac{369}{2312} a^{5} + \frac{57}{136} a^{3} + \frac{3}{8} a$, $\frac{1}{187530105275062742416} a^{14} + \frac{1102251714715469}{93765052637531371208} a^{12} - \frac{3265921623166707}{3348751879911834686} a^{10} - \frac{248761834029448851}{23441263159382842802} a^{8} + \frac{38421717650550520191}{93765052637531371208} a^{6} + \frac{273112697426079435}{2757795665809746212} a^{4} + \frac{54939490409479}{1763296461515183} a^{2} + \frac{873608215529618}{2385636389108777}$, $\frac{1}{187530105275062742416} a^{15} + \frac{1102251714715469}{93765052637531371208} a^{13} - \frac{3265921623166707}{3348751879911834686} a^{11} - \frac{248761834029448851}{23441263159382842802} a^{9} + \frac{38421717650550520191}{93765052637531371208} a^{7} + \frac{273112697426079435}{2757795665809746212} a^{5} + \frac{54939490409479}{1763296461515183} a^{3} + \frac{873608215529618}{2385636389108777} a$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5315853063.94 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 80 conjugacy class representatives for t16n1392 are not computed |
| Character table for t16n1392 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 4.4.195584.1, 4.4.391168.1, 8.8.2448198467584.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 191 | Data not computed | ||||||