Properties

Label 16.4.82017942110...9584.2
Degree $16$
Signature $[4, 6]$
Discriminant $2^{66}\cdot 17^{4}\cdot 191^{4}$
Root discriminant $131.71$
Ramified primes $2, 17, 191$
Class number $16$ (GRH)
Class group $[2, 2, 4]$ (GRH)
Galois group 16T1392

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![334084, 0, 7389152, 0, 33838432, 0, 7447904, 0, 295164, 0, -22000, 0, -1200, 0, 16, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 16*x^14 - 1200*x^12 - 22000*x^10 + 295164*x^8 + 7447904*x^6 + 33838432*x^4 + 7389152*x^2 + 334084)
 
gp: K = bnfinit(x^16 + 16*x^14 - 1200*x^12 - 22000*x^10 + 295164*x^8 + 7447904*x^6 + 33838432*x^4 + 7389152*x^2 + 334084, 1)
 

Normalized defining polynomial

\( x^{16} + 16 x^{14} - 1200 x^{12} - 22000 x^{10} + 295164 x^{8} + 7447904 x^{6} + 33838432 x^{4} + 7389152 x^{2} + 334084 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(8201794211074936440642419329859584=2^{66}\cdot 17^{4}\cdot 191^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $131.71$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 17, 191$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{16} a^{8} - \frac{1}{2} a^{7} - \frac{1}{8}$, $\frac{1}{16} a^{9} - \frac{1}{8} a$, $\frac{1}{272} a^{10} - \frac{1}{272} a^{8} - \frac{1}{2} a^{7} - \frac{7}{17} a^{6} + \frac{2}{17} a^{4} + \frac{39}{136} a^{2} + \frac{1}{8}$, $\frac{1}{272} a^{11} - \frac{1}{272} a^{9} - \frac{7}{17} a^{7} + \frac{2}{17} a^{5} + \frac{39}{136} a^{3} + \frac{1}{8} a$, $\frac{1}{4624} a^{12} - \frac{1}{4624} a^{10} - \frac{27}{4624} a^{8} - \frac{1}{2} a^{7} - \frac{100}{289} a^{6} - \frac{369}{2312} a^{4} + \frac{57}{136} a^{2} + \frac{3}{8}$, $\frac{1}{4624} a^{13} - \frac{1}{4624} a^{11} - \frac{27}{4624} a^{9} - \frac{100}{289} a^{7} - \frac{369}{2312} a^{5} + \frac{57}{136} a^{3} + \frac{3}{8} a$, $\frac{1}{187530105275062742416} a^{14} + \frac{1102251714715469}{93765052637531371208} a^{12} - \frac{3265921623166707}{3348751879911834686} a^{10} - \frac{248761834029448851}{23441263159382842802} a^{8} + \frac{38421717650550520191}{93765052637531371208} a^{6} + \frac{273112697426079435}{2757795665809746212} a^{4} + \frac{54939490409479}{1763296461515183} a^{2} + \frac{873608215529618}{2385636389108777}$, $\frac{1}{187530105275062742416} a^{15} + \frac{1102251714715469}{93765052637531371208} a^{13} - \frac{3265921623166707}{3348751879911834686} a^{11} - \frac{248761834029448851}{23441263159382842802} a^{9} + \frac{38421717650550520191}{93765052637531371208} a^{7} + \frac{273112697426079435}{2757795665809746212} a^{5} + \frac{54939490409479}{1763296461515183} a^{3} + \frac{873608215529618}{2385636389108777} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5315853063.94 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1392:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 80 conjugacy class representatives for t16n1392 are not computed
Character table for t16n1392 is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 4.4.195584.1, 4.4.391168.1, 8.8.2448198467584.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$17$$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{17}$$x + 3$$1$$1$$0$Trivial$[\ ]$
17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.2$x^{2} + 51$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.1.1$x^{2} - 17$$2$$1$$1$$C_2$$[\ ]_{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
17.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
191Data not computed