Normalized defining polynomial
\( x^{16} + 40 x^{14} - 876 x^{12} - 57096 x^{10} - 728694 x^{8} - 523736 x^{6} + 32570300 x^{4} + 94604728 x^{2} + 24137569 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[4, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8201794211074936440642419329859584=2^{66}\cdot 17^{4}\cdot 191^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $131.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 191$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{102} a^{8} + \frac{25}{51} a^{6} - \frac{1}{51} a^{4} + \frac{2}{51} a^{2} + \frac{1}{6}$, $\frac{1}{204} a^{9} - \frac{1}{204} a^{8} + \frac{25}{102} a^{7} - \frac{25}{102} a^{6} - \frac{1}{102} a^{5} + \frac{1}{102} a^{4} - \frac{49}{102} a^{3} + \frac{49}{102} a^{2} - \frac{5}{12} a + \frac{5}{12}$, $\frac{1}{204} a^{10} - \frac{1}{204} a^{8} + \frac{25}{51} a^{6} + \frac{1}{51} a^{4} + \frac{1}{12} a^{2} + \frac{1}{4}$, $\frac{1}{204} a^{11} - \frac{1}{204} a^{8} - \frac{9}{34} a^{7} - \frac{25}{102} a^{6} + \frac{1}{102} a^{5} + \frac{1}{102} a^{4} - \frac{27}{68} a^{3} + \frac{49}{102} a^{2} - \frac{1}{6} a + \frac{5}{12}$, $\frac{1}{3468} a^{12} + \frac{1}{578} a^{10} - \frac{3}{1156} a^{8} - \frac{232}{867} a^{6} - \frac{257}{1156} a^{4} + \frac{11}{102} a^{2} + \frac{1}{4}$, $\frac{1}{3468} a^{13} + \frac{1}{578} a^{11} + \frac{2}{867} a^{9} - \frac{1}{204} a^{8} - \frac{13}{578} a^{7} - \frac{25}{102} a^{6} - \frac{805}{3468} a^{5} + \frac{1}{102} a^{4} - \frac{19}{51} a^{3} + \frac{49}{102} a^{2} - \frac{1}{6} a + \frac{5}{12}$, $\frac{1}{1052713953699307699692} a^{14} + \frac{5903936964522355}{263178488424826924923} a^{12} - \frac{82969689024311445}{175452325616551283282} a^{10} - \frac{168378163750104647}{350904651233102566564} a^{8} - \frac{294734837092978966163}{1052713953699307699692} a^{6} - \frac{919502863842860211}{5160362518133861273} a^{4} + \frac{207549512322603483}{607101472721630738} a^{2} + \frac{59972141713472083}{214271108019399084}$, $\frac{1}{17896137212888230894764} a^{15} + \frac{5903936964522355}{4474034303222057723691} a^{13} + \frac{25303994456523437695}{17896137212888230894764} a^{11} - \frac{13153473540959810153}{8948068606444115447382} a^{9} - \frac{872695439123971428739}{17896137212888230894764} a^{7} - \frac{63165105127330839064}{263178488424826924923} a^{5} + \frac{28261312610048188739}{61924350217606335276} a^{3} + \frac{378176621388259553}{1821304418164892214} a$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4721707978.18 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2048 |
| The 80 conjugacy class representatives for t16n1392 are not computed |
| Character table for t16n1392 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.195584.1, \(\Q(\zeta_{16})^+\), 4.4.391168.1, 8.8.2448198467584.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 191 | Data not computed | ||||||