Properties

Label 16.4.81425414711...0000.1
Degree $16$
Signature $[4, 6]$
Discriminant $2^{22}\cdot 5^{8}\cdot 89^{6}$
Root discriminant $31.22$
Ramified primes $2, 5, 89$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 16T1772

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![64, 0, -32, 0, -684, 0, -604, 0, 262, 0, 100, 0, -33, 0, -3, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^14 - 33*x^12 + 100*x^10 + 262*x^8 - 604*x^6 - 684*x^4 - 32*x^2 + 64)
 
gp: K = bnfinit(x^16 - 3*x^14 - 33*x^12 + 100*x^10 + 262*x^8 - 604*x^6 - 684*x^4 - 32*x^2 + 64, 1)
 

Normalized defining polynomial

\( x^{16} - 3 x^{14} - 33 x^{12} + 100 x^{10} + 262 x^{8} - 604 x^{6} - 684 x^{4} - 32 x^{2} + 64 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[4, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(814254147110502400000000=2^{22}\cdot 5^{8}\cdot 89^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $31.22$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 89$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5}$, $\frac{1}{84} a^{12} - \frac{1}{4} a^{10} + \frac{17}{84} a^{8} - \frac{19}{42} a^{6} - \frac{5}{42} a^{4} + \frac{1}{3} a^{2} - \frac{2}{21}$, $\frac{1}{336} a^{13} - \frac{1}{168} a^{12} + \frac{1}{16} a^{11} - \frac{1}{8} a^{10} - \frac{25}{336} a^{9} + \frac{25}{168} a^{8} - \frac{41}{84} a^{7} - \frac{1}{42} a^{6} - \frac{5}{168} a^{5} + \frac{5}{84} a^{4} - \frac{5}{12} a^{3} - \frac{1}{6} a^{2} - \frac{23}{84} a - \frac{19}{42}$, $\frac{1}{831936} a^{14} + \frac{1531}{277312} a^{12} - \frac{144589}{831936} a^{10} + \frac{415}{1857} a^{8} + \frac{124387}{415968} a^{6} - \frac{72449}{207984} a^{4} - \frac{102335}{207984} a^{2} + \frac{4901}{17332}$, $\frac{1}{3327744} a^{15} - \frac{1}{1663872} a^{14} + \frac{1531}{1109248} a^{13} - \frac{1531}{554624} a^{12} + \frac{271379}{3327744} a^{11} - \frac{271379}{1663872} a^{10} - \frac{721}{3714} a^{9} - \frac{415}{3714} a^{8} - \frac{291581}{1663872} a^{7} - \frac{124387}{831936} a^{6} + \frac{31543}{831936} a^{5} + \frac{176441}{415968} a^{4} - \frac{102335}{831936} a^{3} + \frac{102335}{415968} a^{2} + \frac{22233}{69328} a + \frac{12431}{34664}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 547185.913016 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1772:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 16384
The 148 conjugacy class representatives for t16n1772 are not computed
Character table for t16n1772 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.2225.1, 8.6.7049690000.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.0.1$x^{4} - x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.4.4.3$x^{4} + 2 x^{2} + 4 x + 4$$2$$2$$4$$D_{4}$$[2, 2]^{2}$
2.8.18.51$x^{8} + 2 x^{6} + 14 x^{4} + 12$$4$$2$$18$$(((C_4 \times C_2): C_2):C_2):C_2$$[2, 2, 3, 7/2, 7/2]^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$89$89.4.0.1$x^{4} - x + 27$$1$$4$$0$$C_4$$[\ ]^{4}$
89.4.0.1$x^{4} - x + 27$$1$$4$$0$$C_4$$[\ ]^{4}$
89.8.6.2$x^{8} + 979 x^{4} + 285156$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$